Question
upstudy study bank question image url

6. \( \sqrt[3]{\frac{x^{2}}{y}} \cdot \sqrt[12]{\frac{27 x^{2}}{16 y}}: \sqrt[6]{\frac{9 x^{5}}{4 y^{2}}} \) 7. \( \sqrt[8]{\frac{x^{3}+x^{2} y}{x-y}}: \sqrt[4]{\frac{x^{2}+x y}{x-y}} \)

Ask by French Wheeler. in Italy
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Problema 6** \[ \frac{1}{3^{\frac{1}{12}} \, y^{\frac{5}{12}}} \] **Problema 7** \[ \sqrt[8]{\frac{x - y}{x + y}} \]

Solution

**Problema 6** Calcoliamo l'espressione: \[ \sqrt[3]{\frac{x^{2}}{y}} \cdot \sqrt[12]{\frac{27 x^{2}}{16 y}} \div \sqrt[6]{\frac{9 x^{5}}{4 y^{2}}} \] Espressiamo tutte le radici come potenze: \[ \left(\frac{x^{2}}{y}\right)^{\frac{1}{3}} \cdot \left(\frac{27 x^{2}}{16 y}\right)^{\frac{1}{12}} \div \left(\frac{9 x^{5}}{4 y^{2}}\right)^{\frac{1}{6}} \] Semplifichiamo ciascun termine separatamente: 1. **Primo termine:** \[ \left(\frac{x^{2}}{y}\right)^{\frac{1}{3}} = x^{\frac{2}{3}} \cdot y^{-\frac{1}{3}} \] 2. **Secondo termine:** \[ \left(\frac{27 x^{2}}{16 y}\right)^{\frac{1}{12}} = 27^{\frac{1}{12}} \cdot x^{\frac{2}{12}} \cdot 16^{-\frac{1}{12}} \cdot y^{-\frac{1}{12}} = 3^{\frac{3}{12}} \cdot x^{\frac{1}{6}} \cdot 2^{-\frac{4}{12}} \cdot y^{-\frac{1}{12}} = 3^{\frac{1}{4}} \cdot x^{\frac{1}{6}} \cdot 2^{-\frac{1}{3}} \cdot y^{-\frac{1}{12}} \] 3. **Terzo termine (denominatore):** \[ \left(\frac{9 x^{5}}{4 y^{2}}\right)^{\frac{1}{6}} = 9^{\frac{1}{6}} \cdot x^{\frac{5}{6}} \cdot 4^{-\frac{1}{6}} \cdot y^{-\frac{2}{6}} = 3^{\frac{2}{6}} \cdot x^{\frac{5}{6}} \cdot 2^{-\frac{2}{6}} \cdot y^{-\frac{1}{3}} = 3^{\frac{1}{3}} \cdot x^{\frac{5}{6}} \cdot 2^{-\frac{1}{3}} \cdot y^{-\frac{1}{3}} \] Ora, riscriviamo l'espressione completa combinando i termini: \[ \frac{ \left( x^{\frac{2}{3}} y^{-\frac{1}{3}} \right) \cdot \left( 3^{\frac{1}{4}} x^{\frac{1}{6}} 2^{-\frac{1}{3}} y^{-\frac{1}{12}} \right) }{ 3^{\frac{1}{3}} x^{\frac{5}{6}} 2^{-\frac{1}{3}} y^{-\frac{1}{3}} } \] Semplifichiamo gli esponenti: - **Per \( x \):** \[ \frac{2}{3} + \frac{1}{6} - \frac{5}{6} = \frac{4}{6} + \frac{1}{6} - \frac{5}{6} = 0 \] - **Per \( y \):** \[ - \frac{1}{3} - \frac{1}{12} + \frac{1}{3} = -\frac{1}{12} \] - **Per i coefficienti numerici:** \[ 3^{\frac{1}{4} - \frac{1}{3}} \cdot 2^{-\frac{1}{3} + \frac{1}{3}} = 3^{-\frac{1}{12}} \cdot 2^{0} = 3^{-\frac{1}{12}} \] Quindi, l'espressione si semplifica a: \[ \frac{1}{3^{\frac{1}{12}} \cdot y^{\frac{5}{12}}} \] **Risultato Finale:** \[ \frac{1}{3^{\frac{1}{12}} \, y^{\frac{5}{12}}} \] --- **Problema 7** Calcoliamo l'espressione: \[ \sqrt[8]{\frac{x^{3}+x^{2} y}{x-y}} \div \sqrt[4]{\frac{x^{2}+x y}{x-y}} \] Espressiamo le radici come potenze: \[ \left( \frac{x^{3} + x^{2} y}{x - y} \right)^{\frac{1}{8}} \div \left( \frac{x^{2} + x y}{x - y} \right)^{\frac{1}{4}} \] Semplifichiamo le frazioni nel numeratore e nel denominatore: 1. **Numeratore:** \[ x^{3} + x^{2} y = x^{2}(x + y) \] \[ \frac{x^{3} + x^{2} y}{x - y} = \frac{x^{2}(x + y)}{x - y} \] 2. **Denominatore:** \[ x^{2} + x y = x(x + y) \] \[ \frac{x^{2} + x y}{x - y} = \frac{x(x + y)}{x - y} \] Ora, riscriviamo l'espressione completa: \[ \left( \frac{x^{2}(x + y)}{x - y} \right)^{\frac{1}{8}} \div \left( \frac{x(x + y)}{x - y} \right)^{\frac{1}{4}} = \left( \frac{x^{2}(x + y)}{x - y} \right)^{\frac{1}{8}} \cdot \left( \frac{x(x + y)}{x - y} \right)^{-\frac{1}{4}} \] Espandiamo gli esponenti: \[ x^{\frac{2}{8}} \cdot (x + y)^{\frac{1}{8}} \cdot (x - y)^{-\frac{1}{8}} \cdot x^{-\frac{1}{4}} \cdot (x + y)^{-\frac{1}{4}} \cdot (x - y)^{\frac{1}{4}} \] Semplifichiamo gli esponenti: - **Per \( x \):** \[ \frac{2}{8} - \frac{1}{4} = \frac{1}{4} - \frac{1}{4} = 0 \] - **Per \( x + y \):** \[ \frac{1}{8} - \frac{1}{4} = \frac{1}{8} - \frac{2}{8} = -\frac{1}{8} \] - **Per \( x - y \):** \[ - \frac{1}{8} + \frac{1}{4} = -\frac{1}{8} + \frac{2}{8} = \frac{1}{8} \] Quindi, l'espressione si semplifica a: \[ \frac{(x - y)^{\frac{1}{8}}}{(x + y)^{\frac{1}{8}}} = \sqrt[8]{\frac{x - y}{x + y}} \] **Risultato Finale:** \[ \sqrt[8]{\frac{x - y}{x + y}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve these expressions, let's evaluate each step-by-step. **6. \( \sqrt[3]{\frac{x^{2}}{y}} \cdot \sqrt[12]{\frac{27 x^{2}}{16 y}}: \sqrt[6]{\frac{9 x^{5}}{4 y^{2}}} \)** First, rewrite the terms with exponents: 1. \( \sqrt[3]{\frac{x^{2}}{y}} = \left(\frac{x^{2}}{y}\right)^{\frac{1}{3}} = \frac{x^{\frac{2}{3}}}{y^{\frac{1}{3}}} \) 2. \( \sqrt[12]{\frac{27 x^{2}}{16 y}} = \left(\frac{27 x^{2}}{16 y}\right)^{\frac{1}{12}} = \frac{27^{\frac{1}{12}} x^{\frac{2}{12}}}{16^{\frac{1}{12}} y^{\frac{1}{12}}} \) Here, \( 27^{\frac{1}{12}} = 3^{\frac{3}{12}} = 3^{\frac{1}{4}} \) and \( 16^{\frac{1}{12}} = 2^{\frac{4}{12}} = 2^{\frac{1}{3}} \), so it simplifies to \( \frac{3^{\frac{1}{4}} x^{\frac{1}{6}}}{2^{\frac{1}{3}} y^{\frac{1}{12}}} \). 3. \( \sqrt[6]{\frac{9 x^{5}}{4 y^{2}}} = \left(\frac{9 x^{5}}{4 y^{2}}\right)^{\frac{1}{6}} = \frac{9^{\frac{1}{6}} x^{\frac{5}{6}}}{4^{\frac{1}{6}} y^{\frac{1}{3}}} \) Here, \( 9^{\frac{1}{6}} = 3^{\frac{2}{6}} = 3^{\frac{1}{3}} \) and \( 4^{\frac{1}{6}} = 2^{\frac{4}{6}} = 2^{\frac{2}{3}} \). Putting it all together, we have: \[ \text{Numerator: } \frac{x^{\frac{2}{3}}}{y^{\frac{1}{3}}} \cdot \frac{3^{\frac{1}{4}} x^{\frac{1}{6}}}{2^{\frac{1}{3}} y^{\frac{1}{12}}} \] The numerator becomes: \[ \frac{x^{\frac{2}{3} + \frac{1}{6}} \cdot 3^{\frac{1}{4}}}{y^{\frac{1}{3} + \frac{1}{12}} \cdot 2^{\frac{1}{3}}} \] To simplify exponents: 1. \( \frac{2}{3} = \frac{4}{6} \); thus \( \frac{2}{3} + \frac{1}{6} = \frac{5}{6} \) 2. For \( y: \frac{1}{3} + \frac{1}{12} = \frac{4}{12} + \frac{1}{12} = \frac{5}{12} \) So, the numerator is: \[ \frac{3^{\frac{1}{4}} x^{\frac{5}{6}}}{y^{\frac{5}{12}} \cdot 2^{\frac{1}{3}}} \] Now, dividing by the denominator gives: \[ \frac{\frac{3^{\frac{1}{4}} x^{\frac{5}{6}}}{y^{\frac{5}{12}} \cdot 2^{\frac{1}{3}}}}{\frac{3^{\frac{1}{3}} x^{\frac{5}{6}}}{2^{\frac{2}{3}} y^{\frac{2}{3}}}} \implies \frac{3^{\frac{1}{4} - \frac{1}{3}}}{2^{\frac{1}{3} - \frac{2}{3}}} \cdot \frac{y^{\frac{2}{3}}}{y^{\frac{5

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy