In the expansion \( \left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n} \) if the ratio between the seventh term from the beginning to the seventh term from the end \( 1: 6 \), then \( n \) equals \( \begin{array}{llll}\text { (a) } 7 & \text { (b) } 8 & \text { (c) } 9 & \text { (d) } 10\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
Let's denote the terms in the binomial expansion. The general term \( T_k \) in the expansion of \( \left(a + b\right)^n \) is given by: \[ T_k = \binom{n}{k-1} a^{n-k+1} b^{k-1} \] In our case, \( a = \sqrt[3]{2} \) and \( b = \frac{1}{\sqrt[3]{3}} \). Thus, we have: \[ T_k = \binom{n}{k-1} \left(\sqrt[3]{2}\right)^{n-k+1} \left(\frac{1}{\sqrt[3]{3}}\right)^{k-1} \] For the seventh term from the beginning, which is \( T_7 \): \[ T_7 = \binom{n}{6} \left(\sqrt[3]{2}\right)^{n-6} \left(\frac{1}{\sqrt[3]{3}}\right)^{6} \] For the seventh term from the end, which is \( T_{n-6} \): \[ T_{n-6} = \binom{n}{n-6} \left(\sqrt[3]{2}\right)^{6} \left(\frac{1}{\sqrt[3]{3}}\right)^{n-6} \] The ratio of these two terms is given as \( 1:6 \): \[ \frac{T_7}{T_{n-6}} = \frac{\binom{n}{6} \left(\sqrt[3]{2}\right)^{n-6} \left(\frac{1}{\sqrt[3]{3}}\right)^{6}}{\binom{n}{n-6} \left(\sqrt[3]{2}\right)^{6} \left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}} = \frac{1}{6} \] Since \( \binom{n}{6} = \binom{n}{n-6} \), we can simplify the equation to: \[ \frac{\binom{n}{6}}{\binom{n}{6}} \cdot \frac{\left(\sqrt[3]{2}\right)^{n-6}}{\left(\sqrt[3]{2}\right)^{6}} \cdot \frac{\left(\frac{1}{\sqrt[3]{3}}\right)^{6}}{\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}} = \frac{\left(\sqrt[3]{2}\right)^{n-6}}{\left(\sqrt[3]{2}\right)^{6}} \cdot \left(\frac{1}{\sqrt[3]{3}}\right)^{6-n+6} \] Let’s simplify this expression: \[ \frac{\left(\sqrt[3]{2}\right)^{n-6}}{\left(\sqrt[3]{2}\right)^{6}} = \left(\sqrt[3]{2}\right)^{n-12} \] \[ \frac{\left(\frac{1}{\sqrt[3]{3}}\right)^{6-n+6}}{\left(\frac{1}{\sqrt[3]{3}}\right)^{0}}= \left(3^{1/3}\right)^{n-12} = \left(\sqrt[3]{3}\right)^{n-12} \] Putting this together, we get: \[ \left(\sqrt[3]{2}\right)^{n-12} \left(\sqrt[3]{3}\right)^{n-12} = \frac{1}{6} \] Now, let’s denote \( \sqrt[3]{2} = 2^{1/3} \) and \( \sqrt[3]{3} = 3^{1/3} \): \[ \left(\frac{2}{3}\right)^{(n-12)/3} = \frac{1}{6} \] Taking the cube of both sides: \[ \frac{2}{3}^{n-12} = \frac{1}{216} \] This implies: \[ \frac{2}{3}^{n-12} = \frac{1}{6^3} = \left(\frac{1}{2}\cdot\frac{1}{3}\right)^3 \] Since \( \frac{2}{3}^{n-12} = (2^{-3}) \cdot (3^{-3}) \