Question
upstudy study bank question image url

(4) \( 20000: ?=1000: 1 \) (5) \( ?: 400=4: 100 \) (7) \( 7: 0,2=7: 6 \), (8) \( 8 \mathrm{~cm}: 1 \mathrm{~m}=?: 250 \) (9) 20 seconds \( : 2 \) minutes \( =1: \) ? (10) \( 30 \mathrm{~g}: ? \mathrm{mg}=40: 1 \) (11) ? hours, 10 seconds \( =720: 1 \) Divide the number 720 into the following ratios: (1) \( 5: 4 \) (2) \( 1: 9 \) (3) \( 2: 1: 3 \) Divide each of the following numbers in a ratio of \( 5: 3 \) : (1) 80 (2) 176 (3) 100 Divide the following numbers in a ratio \( 1: 5: 5 \) : (1) (2) 33 (3) 253 The ratio- of boys to eirls at a party is \( 4: 3 \). If there are 20 boys, how many

Ask by Brooks Mitchell. in South Africa
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Solutions:** 1. **Problem (4):** 20 2. **Problem (5):** 16 3. **Problem (7):** Cannot determine with given information. 4. **Problem (8):** 20 5. **Problem (9):** 6 6. **Problem (10):** 750 mg 7. **Problem (11):** 2 hours **Dividing 720 into Ratios:** 1. **5 : 4** → 400 : 320 2. **1 : 9** → 72 : 648 3. **2 : 1 : 3** → 240 : 120 : 360 **Dividing Numbers in the Ratio 5 : 3:** 1. **80** → 50 : 30 2. **176** → 110 : 66 3. **100** → 62.5 : 37.5 **Dividing Numbers in the Ratio 1 : 5 : 5:** 1. **33** → 3 : 15 : 15 2. **253** → 23 : 115 : 115 **Final Problem:** There are 15 girls at the party. If you have more questions or need further assistance, feel free to ask!

Solution

Sure, let's solve each of the ratio and proportion problems step by step. --- ### **Problem (4)** \[ 20000 : \, ? \, = \, 1000 : 1 \] **Solution:** Set up the proportion: \[ \frac{20000}{x} = \frac{1000}{1} \] Cross-multiply: \[ 20000 \times 1 = 1000 \times x \\ 20000 = 1000x \\ x = \frac{20000}{1000} = 20 \] **Answer:** **20** --- ### **Problem (5)** \[ \, ? \, : \, 400 \, = \, 4 : 100 \] **Solution:** Set up the proportion: \[ \frac{x}{400} = \frac{4}{100} \] Cross-multiply: \[ 100x = 4 \times 400 \\ 100x = 1600 \\ x = \frac{1600}{100} = 16 \] **Answer:** **16** --- ### **Problem (7)** \[ 7 : 0.2 \, = \, 7 : 6 \] **Solution:** This appears to be an incomplete or incorrectly stated problem. If the intention is to find an equivalent ratio or to solve for a missing value, additional information is needed. Please provide more details or clarify the problem statement. --- ### **Problem (8)** \[ 8 \, \text{cm} : 1 \, \text{m} = \, ? : 250 \] **Solution:** First, convert meters to centimeters: \[ 1 \, \text{m} = 100 \, \text{cm} \] Set up the proportion: \[ \frac{8}{100} = \frac{x}{250} \] Solve for \( x \): \[ x = \frac{8 \times 250}{100} = \frac{2000}{100} = 20 \] **Answer:** **20** --- ### **Problem (9)** \[ 20 \, \text{seconds} : 2 \, \text{minutes} = 1 : \, ? \] **Solution:** Convert minutes to seconds: \[ 2 \, \text{minutes} = 120 \, \text{seconds} \] Set up the proportion: \[ \frac{20}{120} = \frac{1}{x} \] Solve for \( x \): \[ x = \frac{120 \times 1}{20} = 6 \] **Answer:** **6** --- ### **Problem (10)** \[ 30 \, \text{g} : \, ? \, \text{mg} = 40 : 1 \] **Solution:** Convert grams to milligrams: \[ 30 \, \text{g} = 30000 \, \text{mg} \] Set up the proportion: \[ \frac{30000}{x} = \frac{40}{1} \] Solve for \( x \): \[ x = \frac{30000}{40} = 750 \] **Answer:** **750 mg** --- ### **Problem (11)** \[ \, ? \, \text{hours} : 10 \, \text{seconds} = 720 : 1 \] **Solution:** First, convert hours and seconds to the same unit. Let's convert hours to seconds: \[ x \, \text{hours} = x \times 3600 \, \text{seconds} \] Set up the proportion: \[ \frac{x \times 3600}{10} = \frac{720}{1} \] Solve for \( x \): \[ x \times 3600 = 720 \times 10 \\ x \times 3600 = 7200 \\ x = \frac{7200}{3600} = 2 \] **Answer:** **2 hours** --- ### **Dividing the Number 720 into Given Ratios** #### **(1) Ratio \( 5 : 4 \)** - **Total parts:** \( 5 + 4 = 9 \) - **Each part:** \( \frac{720}{9} = 80 \) - **Division:** - First part: \( 5 \times 80 = 400 \) - Second part: \( 4 \times 80 = 320 \) **Answer:** **400 : 320** #### **(2) Ratio \( 1 : 9 \)** - **Total parts:** \( 1 + 9 = 10 \) - **Each part:** \( \frac{720}{10} = 72 \) - **Division:** - First part: \( 1 \times 72 = 72 \) - Second part: \( 9 \times 72 = 648 \) **Answer:** **72 : 648** #### **(3) Ratio \( 2 : 1 : 3 \)** - **Total parts:** \( 2 + 1 + 3 = 6 \) - **Each part:** \( \frac{720}{6} = 120 \) - **Division:** - First part: \( 2 \times 120 = 240 \) - Second part: \( 1 \times 120 = 120 \) - Third part: \( 3 \times 120 = 360 \) **Answer:** **240 : 120 : 360** --- ### **Dividing Numbers in the Ratio \( 5 : 3 \)** #### **(1) Number 80** - **Total parts:** \( 5 + 3 = 8 \) - **Each part:** \( \frac{80}{8} = 10 \) - **Division:** - First part: \( 5 \times 10 = 50 \) - Second part: \( 3 \times 10 = 30 \) **Answer:** **50 : 30** #### **(2) Number 176** - **Total parts:** \( 5 + 3 = 8 \) - **Each part:** \( \frac{176}{8} = 22 \) - **Division:** - First part: \( 5 \times 22 = 110 \) - Second part: \( 3 \times 22 = 66 \) **Answer:** **110 : 66** #### **(3) Number 100** - **Total parts:** \( 5 + 3 = 8 \) - **Each part:** \( \frac{100}{8} = 12.5 \) - **Division:** - First part: \( 5 \times 12.5 = 62.5 \) - Second part: \( 3 \times 12.5 = 37.5 \) **Answer:** **62.5 : 37.5** --- ### **Dividing Numbers in the Ratio \( 1 : 5 : 5 \)** #### **(2) Number 33** - **Total parts:** \( 1 + 5 + 5 = 11 \) - **Each part:** \( \frac{33}{11} = 3 \) - **Division:** - First part: \( 1 \times 3 = 3 \) - Second part: \( 5 \times 3 = 15 \) - Third part: \( 5 \times 3 = 15 \) **Answer:** **3 : 15 : 15** #### **(3) Number 253** - **Total parts:** \( 1 + 5 + 5 = 11 \) - **Each part:** \( \frac{253}{11} = 23 \) - **Division:** - First part: \( 1 \times 23 = 23 \) - Second part: \( 5 \times 23 = 115 \) - Third part: \( 5 \times 23 = 115 \) **Answer:** **23 : 115 : 115** --- ### **Final Problem** **The ratio of boys to girls at a party is \( 4 : 3 \). If there are 20 boys, how many girls are there?** **Solution:** Given the ratio \( 4 : 3 \) (boys : girls), and there are 20 boys. - **Each part for boys:** \( \frac{20 \text{ boys}}{4} = 5 \) - **Girls:** \( 3 \times 5 = 15 \) **Answer:** **15 girls** --- If you have any further questions or need additional explanations, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the ratio questions, let’s first tackle the greeting of how ratios work! When you’re dividing a number into a specific ratio, you’re splitting it into parts that maintain the same relative size as indicated in the ratio. This means you can easily find out how many parts each segment gets based on the total number of parts calculated from the ratio. Now, onto a fun application of ratios! Ratios aren’t just academic—they pop up in real life all the time! Whether you’re making the perfect pancake mix (where the ratio of flour to milk really matters), planning a party (where you might discuss the ratio of snacks to guests), or even sharing materials in a class project, understanding how to effectively use ratios can make your life a whole lot smoother and keep you on good terms with others.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy