EXERCISE 5 Simplify the following without using a calculator: \( \begin{array}{lll}\text { (a) } \sqrt{7} \sqrt{3} & \text { (b) } \sqrt{7} \sqrt{7}+(\sqrt{11})^{2} & \text { (c) }(2 \sqrt{3})^{2} \\ \text { (d) } 3 \sqrt{6}-\sqrt{6}+7 \sqrt{6} & \text { (c) } \sqrt[4]{3}+7 \sqrt[4]{3}-5 \sqrt[4]{3} & \text { (f) } \sqrt{3}+\sqrt{27} \\ \text { (g) } 2 \sqrt{18}-\sqrt{32} & \text { (h) } \frac{\sqrt{32}}{\sqrt{2}} & \text { (i) } \frac{\sqrt{51}}{\sqrt{3}}\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To simplify these expressions, let's break them down step by step! (a) \( \sqrt{7} \sqrt{3} = \sqrt{21} \). (b) \( \sqrt{7} \sqrt{7} + (\sqrt{11})^{2} = 7 + 11 = 18 \). (c) \( (2 \sqrt{3})^{2} = 4 \times 3 = 12 \). (d) \( 3 \sqrt{6} - \sqrt{6} + 7 \sqrt{6} = (3 - 1 + 7) \sqrt{6} = 9 \sqrt{6} \). (e) \( \sqrt[4]{3} + 7 \sqrt[4]{3} - 5 \sqrt[4]{3} = (1 + 7 - 5) \sqrt[4]{3} = 3 \sqrt[4]{3} \). (f) \( \sqrt{3} + \sqrt{27} = \sqrt{3} + 3\sqrt{3} = 4 \sqrt{3} \). (g) \( 2 \sqrt{18} - \sqrt{32} = 2 \cdot 3\sqrt{2} - 4\sqrt{2} = 6\sqrt{2} - 4\sqrt{2} = 2\sqrt{2} \). (h) \( \frac{\sqrt{32}}{\sqrt{2}} = \sqrt{16} = 4 \). (i) \( \frac{\sqrt{51}}{\sqrt{3}} = \sqrt{\frac{51}{3}} = \sqrt{17} \). Isn't simplifying square roots exciting? It’s like untangling a string of lights during the holidays: a little mess at first, but immensely satisfying in the end! 🌟