Question
upstudy study bank question image url

12. Considera, para cada \( k \in \square \), a função \( f_{k} \) definida, em IR, por: \[ f_{k}(x)=\left\{\begin{array}{cll}\frac{1-e^{3 x}}{4 x} & \text { se } x \neq 0 \\ k & \text { se } x=0\end{array}\right. \] Para que a função seja continua em 0 , o valor de \( k \) terá de ser: \( \begin{array}{llll}\text { (A) }-\frac{3}{4} & \text { (B) } \frac{3}{4} & \text { (C) } 3 & \text { (D) } 1\end{array} \)

Ask by Gibbs Allan. in Portugal
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Pour que la fonction \( f_{k} \) soit continue en \( 0 \), le nombre \( k \) doit être \( -\frac{3}{4} \).

Solution

Pour que la fonction \( f_{k} \) soit continue en \( 0 \), la limite de \( f_{k}(x) \) lorsque \( x \) tend vers \( 0 \) doit être égale à \( f_{k}(0) = k \). Calculons la limite : \[ \lim_{x \to 0} \frac{1 - e^{3x}}{4x} \] Développons \( e^{3x} \) en série de Taylor autour de \( x = 0 \) : \[ e^{3x} \approx 1 + 3x + \frac{9x^2}{2} + \dots \] Ainsi, \[ 1 - e^{3x} \approx -3x - \frac{9x^2}{2} + \dots \] En divisant par \( 4x \) : \[ \frac{1 - e^{3x}}{4x} \approx \frac{-3x - \frac{9x^2}{2} + \dots}{4x} \approx -\frac{3}{4} + \dots \] La limite est donc \( -\frac{3}{4} \). Pour que la fonction soit continue en \( 0 \), il faut que \( k = -\frac{3}{4} \). **Réponse : (A) \(-\frac{3}{4}\)**

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Para que a função \( f_k \) sea continua en \( x = 0 \), el límite de \( f_k(x) \) cuando \( x \) se aproxima a 0 debe ser igual al valor de \( f_k(0) = k \). Primero, calculamos el límite: \[ \lim_{x \to 0} f_k(x) = \lim_{x \to 0} \frac{1 - e^{3x}}{4x} \] Utilizando la regla de L'Hôpital, que se aplica cuando tenemos una forma indeterminada \( \frac{0}{0} \), derivamos el numerador y el denominador: \[ \lim_{x \to 0} \frac{3e^{3x}}{4} = \frac{3e^0}{4} = \frac{3}{4} \] Por lo tanto, para que \( f_k \) sea continua en 0, se debe cumplir que \( k = \frac{3}{4} \). La respuesta correcta es \( \text{(B) } \frac{3}{4} \).

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy