Question
upstudy study bank question image url

Exorcise 3.11 . Let \( \mathrm{A}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 6 & -5\end{array}\right) \). Find the matrix obtained from \( A \) by applying the following elementary row operation. \( \begin{array}{lll}\text { a. } R_{1} \leftrightarrow R_{3} & \text { b. } R_{2} \rightarrow R_{2}-4 R_{1} & \text { c. } R_{3} \rightarrow \frac{1}{3} R_{3}\end{array} \)

Ask by Marsh Schofield. in Ethiopia
Dec 23,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

After applying the elementary row operations: - **a. Swapping \( R_1 \) and \( R_3 \):** \[ \begin{pmatrix} 3 & 6 & -5 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix} \] - **b. Replacing \( R_2 \) with \( R_2 - 4R_1 \):** \[ \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 3 & 6 & -5 \end{pmatrix} \] - **c. Replacing \( R_3 \) with \( \frac{1}{3}R_3 \):** \[ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & -\frac{5}{3} \end{pmatrix} \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

Let’s tackle each of the elementary row operations step by step on the matrix \( A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 6 & -5 \end{pmatrix} \). **a.** For the operation \( R_{1} \leftrightarrow R_{3} \), we will swap the first row and the third row: \[ A' = \begin{pmatrix} 3 & 6 & -5 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix} \] **b.** Next, we perform \( R_{2} \rightarrow R_{2} - 4 R_{1} \). We need to replace \( R_2 \) with the result of \( R_2 \) minus 4 times \( R_1 \): \[ R_{2} = R_{2} - 4 R_{1} = \begin{pmatrix} 4 & 5 & 6 \end{pmatrix} - 4 \begin{pmatrix} 3 & 6 & -5 \end{pmatrix} = \begin{pmatrix} 4 - 12 & 5 - 24 & 6 + 20 \end{pmatrix} = \begin{pmatrix} -8 & -19 & 26 \end{pmatrix} \] The updated matrix becomes: \[ A'' = \begin{pmatrix} 3 & 6 & -5 \\ -8 & -19 & 26 \\ 1 & 2 & 3 \end{pmatrix} \] **c.** Finally, for the operation \( R_{3} \rightarrow \frac{1}{3} R_{3} \), we multiply the third row by \(\frac{1}{3}\): \[ R_{3} = \frac{1}{3} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 1 \end{pmatrix} \] Thus, the final matrix is: \[ A''' = \begin{pmatrix} 3 & 6 & -5 \\ -8 & -19 & 26 \\ \frac{1}{3} & \frac{2}{3} & 1 \end{pmatrix} \] In summary, after applying all the specified row operations, the resulting matrix is: \[ \begin{pmatrix} 3 & 6 & -5 \\ -8 & -19 & 26 \\ \frac{1}{3} & \frac{2}{3} & 1 \end{pmatrix} \]

Related Questions

Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025

Latest Other Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy