Exorcise 3.11 . Let \( \mathrm{A}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 6 & -5\end{array}\right) \). Find the matrix obtained from \( A \) by applying the following elementary row operation. \( \begin{array}{lll}\text { a. } R_{1} \leftrightarrow R_{3} & \text { b. } R_{2} \rightarrow R_{2}-4 R_{1} & \text { c. } R_{3} \rightarrow \frac{1}{3} R_{3}\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
Let’s tackle each of the elementary row operations step by step on the matrix \( A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 6 & -5 \end{pmatrix} \). **a.** For the operation \( R_{1} \leftrightarrow R_{3} \), we will swap the first row and the third row: \[ A' = \begin{pmatrix} 3 & 6 & -5 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix} \] **b.** Next, we perform \( R_{2} \rightarrow R_{2} - 4 R_{1} \). We need to replace \( R_2 \) with the result of \( R_2 \) minus 4 times \( R_1 \): \[ R_{2} = R_{2} - 4 R_{1} = \begin{pmatrix} 4 & 5 & 6 \end{pmatrix} - 4 \begin{pmatrix} 3 & 6 & -5 \end{pmatrix} = \begin{pmatrix} 4 - 12 & 5 - 24 & 6 + 20 \end{pmatrix} = \begin{pmatrix} -8 & -19 & 26 \end{pmatrix} \] The updated matrix becomes: \[ A'' = \begin{pmatrix} 3 & 6 & -5 \\ -8 & -19 & 26 \\ 1 & 2 & 3 \end{pmatrix} \] **c.** Finally, for the operation \( R_{3} \rightarrow \frac{1}{3} R_{3} \), we multiply the third row by \(\frac{1}{3}\): \[ R_{3} = \frac{1}{3} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 1 \end{pmatrix} \] Thus, the final matrix is: \[ A''' = \begin{pmatrix} 3 & 6 & -5 \\ -8 & -19 & 26 \\ \frac{1}{3} & \frac{2}{3} & 1 \end{pmatrix} \] In summary, after applying all the specified row operations, the resulting matrix is: \[ \begin{pmatrix} 3 & 6 & -5 \\ -8 & -19 & 26 \\ \frac{1}{3} & \frac{2}{3} & 1 \end{pmatrix} \]