Question
upstudy study bank question image url

The angles \( A \) and \( B \) are such that \( \sin A=\frac{3}{5} \) and \( \cos B=-\frac{4}{5} \), where \( A \) and \( B \) are in the same quadrant. Find the value of each of the following without using a calculator. \( \begin{array}{ll}\text { (i) } \tan (A+B) & \text { (ii) } \cos (A+B) \\ \text { (iii) } \sin (A-B) & \end{array} \)

Ask by Ross Martin. in Singapore
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \tan(A+B) = -\dfrac{24}{7} \), \( \cos(A+B) = \dfrac{7}{25} \), \( \sin(A-B) = 0 \).

Solution

Given that both angles \( A \) and \( B \) are in the same quadrant and: \[ \sin A = \frac{3}{5}, \quad \cos B = -\frac{4}{5} \] ### Determining the Quadrant: - \( \sin A = \frac{3}{5} > 0 \) implies that angle \( A \) is either in the **First** or **Second** quadrant. - \( \cos B = -\frac{4}{5} < 0 \) implies that angle \( B \) is either in the **Second** or **Third** quadrant. Since \( A \) and \( B \) are in the **same quadrant**, both must be in the **Second** quadrant. ### Finding Remaining Trigonometric Values: For angle \( A \) in the Second Quadrant: \[ \cos A = -\sqrt{1 - \sin^2 A} = -\sqrt{1 - \left(\frac{3}{5}\right)^2} = -\frac{4}{5} \] For angle \( B \) in the Second Quadrant: \[ \sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - \left(-\frac{4}{5}\right)^2} = \frac{3}{5} \] ### (i) \( \tan(A + B) \): Using the tangent addition formula: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] First, calculate \( \tan A \) and \( \tan B \): \[ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4} \] \[ \tan B = \frac{\sin B}{\cos B} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4} \] Now, substitute into the addition formula: \[ \tan(A + B) = \frac{-\frac{3}{4} - \frac{3}{4}}{1 - \left(-\frac{3}{4}\right)\left(-\frac{3}{4}\right)} = \frac{-\frac{6}{4}}{1 - \frac{9}{16}} = \frac{-\frac{3}{2}}{\frac{7}{16}} = -\frac{24}{7} \] ### (ii) \( \cos(A + B) \): Using the cosine addition formula: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] \[ \cos(A + B) = \left(-\frac{4}{5}\right)\left(-\frac{4}{5}\right) - \left(\frac{3}{5}\right)\left(\frac{3}{5}\right) = \frac{16}{25} - \frac{9}{25} = \frac{7}{25} \] ### (iii) \( \sin(A - B) \): Using the sine subtraction formula: \[ \sin(A - B) = \sin A \cos B - \cos A \sin B \] \[ \sin(A - B) = \left(\frac{3}{5}\right)\left(-\frac{4}{5}\right) - \left(-\frac{4}{5}\right)\left(\frac{3}{5}\right) = -\frac{12}{25} + \frac{12}{25} = 0 \] ### Summary of Results: \[ \begin{aligned} &\text{(i)} \quad \tan(A + B) = -\frac{24}{7} \\ &\text{(ii)} \quad \cos(A + B) = \frac{7}{25} \\ &\text{(iii)} \quad \sin(A - B) = 0 \\ \end{aligned} \] **Answer:** (i) \( \tan(A+B) = -\dfrac{24}{7} \) (ii) \( \cos(A+B) = \dfrac{7}{25} \) (iii) \( \sin(A-B) = 0 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To solve for \(\tan (A+B)\), \(\cos (A+B)\), and \(\sin (A-B)\), we can use the given values of \(\sin A\) and \(\cos B\) along with the relationships between the trigonometric functions. Given: \[ \sin A = \frac{3}{5} \] Using the Pythagorean identity: \[ \cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}. \] Since both angles \(A\) and \(B\) are in the same quadrant (which is the second quadrant), we take \(\cos A = -\frac{4}{5}\). Next, we have: \[ \cos B = -\frac{4}{5}, \] and we can find \(\sin B\) using the Pythagorean identity: \[ \sin B = -\sqrt{1 - \cos^2 B} = -\sqrt{1 - \left(-\frac{4}{5}\right)^2} = -\sqrt{1 - \frac{16}{25}} = -\sqrt{\frac{9}{25}} = -\frac{3}{5}. \] Now we can find \(\tan (A+B)\): \[ \tan (A+B) = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}. \] Substituting the known values: \[ = \frac{\left(\frac{3}{5}\right)\left(-\frac{4}{5}\right) + \left(-\frac{4}{5}\right)\left(-\frac{3}{5}\right)}{\left(-\frac{4}{5}\right)\left(-\frac{4}{5}\right) - \left(\frac{3}{5}\right)\left(-\frac{3}{5}\right)}. \] Calculating the numerator: \[ = \frac{-\frac{12}{25} + \frac{12}{25}} = \frac{0}{25} = 0. \] Now for \(\cos (A+B)\): \[ \cos (A+B) = \cos A \cos B - \sin A \sin B. \] Substituting the known values: \[ = \left(-\frac{4}{5}\right)\left(-\frac{4}{5}\right) - \left(\frac{3}{5}\right)\left(-\frac{3}{5}\right). \] Calculating: \[ = \frac{16}{25} + \frac{9}{25} = \frac{25}{25} = 1. \] Finally, to find \(\sin (A-B)\): \[ \sin (A-B) = \sin A \cos B - \cos A \sin B. \] Substituting the known values: \[ = \left(\frac{3}{5}\right)\left(-\frac{4}{5}\right) - \left(-\frac{4}{5}\right)\left(-\frac{3}{5}\right). \] Calculating: \[ = -\frac{12}{25} - \frac{12}{25} = -\frac{24}{25}. \] Putting it all together, we have: (i) \(\tan (A+B) = 0\) (ii) \(\cos (A+B) = 1\) (iii) \(\sin (A-B) = -\frac{24}{25}\)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy