The angles \( A \) and \( B \) are such that \( \sin A=\frac{3}{5} \) and \( \cos B=-\frac{4}{5} \), where \( A \) and \( B \) are in the same quadrant. Find the value of each of the following without using a calculator. \( \begin{array}{ll}\text { (i) } \tan (A+B) & \text { (ii) } \cos (A+B) \\ \text { (iii) } \sin (A-B) & \end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve for \(\tan (A+B)\), \(\cos (A+B)\), and \(\sin (A-B)\), we can use the given values of \(\sin A\) and \(\cos B\) along with the relationships between the trigonometric functions. Given: \[ \sin A = \frac{3}{5} \] Using the Pythagorean identity: \[ \cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}. \] Since both angles \(A\) and \(B\) are in the same quadrant (which is the second quadrant), we take \(\cos A = -\frac{4}{5}\). Next, we have: \[ \cos B = -\frac{4}{5}, \] and we can find \(\sin B\) using the Pythagorean identity: \[ \sin B = -\sqrt{1 - \cos^2 B} = -\sqrt{1 - \left(-\frac{4}{5}\right)^2} = -\sqrt{1 - \frac{16}{25}} = -\sqrt{\frac{9}{25}} = -\frac{3}{5}. \] Now we can find \(\tan (A+B)\): \[ \tan (A+B) = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}. \] Substituting the known values: \[ = \frac{\left(\frac{3}{5}\right)\left(-\frac{4}{5}\right) + \left(-\frac{4}{5}\right)\left(-\frac{3}{5}\right)}{\left(-\frac{4}{5}\right)\left(-\frac{4}{5}\right) - \left(\frac{3}{5}\right)\left(-\frac{3}{5}\right)}. \] Calculating the numerator: \[ = \frac{-\frac{12}{25} + \frac{12}{25}} = \frac{0}{25} = 0. \] Now for \(\cos (A+B)\): \[ \cos (A+B) = \cos A \cos B - \sin A \sin B. \] Substituting the known values: \[ = \left(-\frac{4}{5}\right)\left(-\frac{4}{5}\right) - \left(\frac{3}{5}\right)\left(-\frac{3}{5}\right). \] Calculating: \[ = \frac{16}{25} + \frac{9}{25} = \frac{25}{25} = 1. \] Finally, to find \(\sin (A-B)\): \[ \sin (A-B) = \sin A \cos B - \cos A \sin B. \] Substituting the known values: \[ = \left(\frac{3}{5}\right)\left(-\frac{4}{5}\right) - \left(-\frac{4}{5}\right)\left(-\frac{3}{5}\right). \] Calculating: \[ = -\frac{12}{25} - \frac{12}{25} = -\frac{24}{25}. \] Putting it all together, we have: (i) \(\tan (A+B) = 0\) (ii) \(\cos (A+B) = 1\) (iii) \(\sin (A-B) = -\frac{24}{25}\)