Question
upstudy study bank question image url

A company wholesales shampoo in a particular city. Their marketing research department established the following weeklyrsupply-and-demand equations. \[ p=\frac{x}{600}+\frac{1}{2} \quad \text { Supply equation } \] \[ p=\frac{4,500}{x} \quad \text { Demand equation } \] How many units are required for supply to equal demand? At what price per bottle will supply equal demand? How many units are required for supply to equal demand? At what price per bottle will supply equal demand? \( \$ \square \) (Round to the nearest cent as needed.)

Ask by Ingram Flynn. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Para que a oferta seja igual à demanda, o número de unidades necessárias é 1,500 e o preço por garrafa é \$3.

Solution

Para encontrar o número de unidades necessárias para que a oferta seja igual à demanda, precisamos igualar as duas equações de oferta e demanda e resolver para \( x \). A equação de oferta é dada por \( p = \frac{x}{600} + \frac{1}{2} \) e a equação de demanda é dada por \( p = \frac{4,500}{x} \). Igualando as duas equações, temos: \[ \frac{x}{600} + \frac{1}{2} = \frac{4,500}{x} \] Para resolver essa equação, podemos multiplicar ambos os lados por \( 600x \) para eliminar as frações: \[ x^2 + 300x = 2,700,000 \] Agora, podemos resolver essa equação quadrática para encontrar o valor de \( x \). Vamos resolver a equação quadrática \( x^2 + 300x - 2,700,000 = 0 \) para encontrar o valor de \( x \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(x^{2}+300x-2700000=0\) - step1: Factor the expression: \(\left(x-1500\right)\left(x+1800\right)=0\) - step2: Separate into possible cases: \(\begin{align}&x-1500=0\\&x+1800=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=1500\\&x=-1800\end{align}\) - step4: Rewrite: \(x_{1}=-1800,x_{2}=1500\) As soluções da equação quadrática são \( x = -1800 \) e \( x = 1500 \). No entanto, o número de unidades não pode ser negativo, pois não faz sentido ter uma quantidade negativa de unidades. Portanto, o número de unidades necessárias para que a oferta seja igual à demanda é \( x = 1500 \). Agora, vamos encontrar o preço por garrafa quando a oferta é igual à demanda. Substituindo \( x = 1500 \) nas equações de oferta e demanda, podemos encontrar o preço. Substituindo \( x = 1500 \) na equação de oferta \( p = \frac{x}{600} + \frac{1}{2} \), temos: \[ p = \frac{1500}{600} + \frac{1}{2} = 2.5 + 0.5 = 3 \] Portanto, o preço por garrafa quando a oferta é igual à demanda é de \( \$3 \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the quantity where supply equals demand, we need to set the supply equation equal to the demand equation. The supply equation is: \[ p = \frac{x}{600} + \frac{1}{2} \] The demand equation is: \[ p = \frac{4,500}{x} \] Setting them equal to each other: \[ \frac{x}{600} + \frac{1}{2} = \frac{4,500}{x} \] To solve for \( x \), first eliminate the fractions by multiplying through by \( 600x \): \[ x^2 + 300x = 2 \cdot 4,500 \] \[ x^2 + 300x - 9000 = 0 \] Next, use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Where \( a = 1 \), \( b = 300 \), and \( c = -9000 \): \[ x = \frac{-300 \pm \sqrt{300^2 - 4 \cdot 1 \cdot (-9000)}}{2 \cdot 1} \] \[ x = \frac{-300 \pm \sqrt{90000 + 36000}}{2} \] \[ x = \frac{-300 \pm \sqrt{126000}}{2} \] Calculating further: \[ \sqrt{126000} \approx 355.55 \] \[ x = \frac{-300 \pm 355.55}{2} \] Taking the positive root: \[ x \approx \frac{55.55}{2} \approx 27.78 \] We round to the nearest whole number, giving us \( x = 28 \) units. Now, substitute \( x \) back into either equation to find the price: Using the demand equation: \[ p = \frac{4500}{28} \approx 160.71 \] Thus, the units required for supply to equal demand is \( 28 \) bottles, and the price per bottle at that point is approximately \( \$160.71 \).

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy