Question
upstudy study bank question image url

(1) Resuelve las siguientes ecuaciones a) \( (4+x)^{2}-(2 x+5)(3 x+4)=x^{2}-1+(2 x+5)(1-x) \)

Ask by Lambert Mcfarlane. in Spain
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las soluciones son \( x=-2 \) y \( x=-1 \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

Para resolver la ecuación \( (4+x)^{2}-(2 x+5)(3 x+4)=x^{2}-1+(2 x+5)(1-x) \), primero simplificamos ambos lados. Expandimos el lado izquierdo: - \( (4+x)^{2} = 16 + 8x + x^{2} \) - \( (2x+5)(3x+4) = 6x^{2} + 8x + 15 \) Lo que resulta en: \[ 16 + 8x + x^{2} - (6x^{2} + 8x + 15) = 16 + 8x + x^{2} - 6x^{2} - 8x - 15 = -5x^{2} + 1 \] Ahora, expandemos el lado derecho: - \( (2x+5)(1-x) = 2x - 2x^{2} + 5 - 5x = -2x^{2} - 3x + 5 \) Entonces la ecuación se convierte en: \[ -5x^{2} + 1 = x^{2} - 1 + (-2x^{2} - 3x + 5) \] \[ -5x^{2} + 1 = -2x^{2} - 3x + 4 \] Al llevar todos los términos al mismo lado, obtenemos: \[ -5x^{2} + 2x^{2} + 3x + 1 - 4 = 0 \] \[ -3x^{2} + 3x - 3 = 0 \] Dividiendo por -3: \[ x^{2} - x + 1 = 0 \] Ahora, encontramos la solución de esta ecuación cuadrática usando la fórmula general: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] \[ x = \frac{1 \pm \sqrt{(-1)^{2} - 4(1)(1)}}{2(1)} \] \[ x = \frac{1 \pm \sqrt{1 - 4}}{2} \] \[ x = \frac{1 \pm \sqrt{-3}}{2} \] Esto nos da soluciones complejas: \[ x = \frac{1 \pm i\sqrt{3}}{2} \] Por lo tanto, las soluciones de la ecuación son \( \frac{1 + i\sqrt{3}}{2} \) y \( \frac{1 - i\sqrt{3}}{2} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy