Question
upstudy study bank question image url

7. Find the general solution of each of the following equations \( \begin{array}{ll}\text { (a) } \cos 2 \theta=0,4 & \text { (b) } 5 \sin \theta+14 \cos \theta=0\end{array} \) 8. Solve for \( x \) if \( \sin \left(x+30^{\circ}\right)=-0.2 \) where \( x \in\left(-180^{\circ} ; 0^{\circ}\right) \)

Ask by Phillips Perkins. in South Africa
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Problem 7 Solutions:** **(a) \( \cos 2\theta = 0.4 \):** \[ \theta = \pm 33.21^\circ + 180^\circ n \quad \text{for any integer } n \] **(b) \( 5 \sin \theta + 14 \cos \theta = 0 \):** \[ \theta = \tan^{-1}\left(-\frac{14}{5}\right) + \pi n \quad \text{for any integer } n \] **Problem 8 Solution:** \[ x \approx -41.5^\circ \]

Solution

Let's solve each of the problems step-by-step. --- ### **Problem 7** **Find the general solution of each of the following equations:** **(a) \( \cos 2\theta = 0.4 \)** **Solution:** To find the general solution for \( \cos 2\theta = 0.4 \), follow these steps: 1. **Find the Principal Solutions:** \[ 2\theta = \cos^{-1}(0.4) + 2\pi n \quad \text{and} \quad 2\theta = -\cos^{-1}(0.4) + 2\pi n \] where \( n \) is any integer. 2. **Solve for \( \theta \):** Divide both sides by 2: \[ \theta = \frac{1}{2} \cos^{-1}(0.4) + \pi n \quad \text{and} \quad \theta = -\frac{1}{2} \cos^{-1}(0.4) + \pi n \] 3. **Combine the Solutions:** The general solution can be concisely written as: \[ \theta = \pm \frac{1}{2} \cos^{-1}(0.4) + \pi n \quad \text{where} \quad n \in \mathbb{Z} \] **Alternatively, in degrees:** If you prefer to express the solution in degrees, calculate \( \cos^{-1}(0.4) \): \[ \cos^{-1}(0.4) \approx 66.42^\circ \] Thus, the general solution becomes: \[ \theta = \pm 33.21^\circ + 180^\circ n \quad \text{where} \quad n \in \mathbb{Z} \] --- **(b) \( 5 \sin \theta + 14 \cos \theta = 0 \)** **Solution:** To solve \( 5 \sin \theta + 14 \cos \theta = 0 \), follow these steps: 1. **Rearrange the Equation:** \[ 5 \sin \theta = -14 \cos \theta \] 2. **Divide Both Sides by \( \cos \theta \) (assuming \( \cos \theta \neq 0 \)):** \[ 5 \tan \theta = -14 \] \[ \tan \theta = -\frac{14}{5} \] 3. **Find the General Solution:** The general solution for \( \tan \theta = -\frac{14}{5} \) is: \[ \theta = \tan^{-1}\left(-\frac{14}{5}\right) + \pi n \quad \text{where} \quad n \in \mathbb{Z} \] **Note:** \( \tan^{-1}\left(-\frac{14}{5}\right) \) can be calculated using a calculator to find the specific angles if needed. --- ### **Problem 8** **Solve for \( x \) if \( \sin \left(x + 30^\circ\right) = -0.2 \) where \( x \in \left(-180^\circ; 0^\circ\right) \)** **Solution:** To solve the equation \( \sin(x + 30^\circ) = -0.2 \) within the interval \( x \in (-180^\circ, 0^\circ) \), follow these steps: 1. **Let \( y = x + 30^\circ \).** Then, the equation becomes: \[ \sin y = -0.2 \] 2. **Find the General Solutions for \( y \):** The general solutions for \( \sin y = -0.2 \) are: \[ y = \sin^{-1}(-0.2) + 360^\circ n \quad \text{and} \quad y = 180^\circ - \sin^{-1}(-0.2) + 360^\circ n \quad \text{where} \quad n \in \mathbb{Z} \] Calculate \( \sin^{-1}(-0.2) \): \[ \sin^{-1}(-0.2) \approx -11.54^\circ \] Therefore, the solutions are: \[ y = -11.54^\circ + 360^\circ n \] \[ y = 180^\circ + 11.54^\circ + 360^\circ n = 191.54^\circ + 360^\circ n \] 3. **Express \( x \) in Terms of \( y \):** Since \( y = x + 30^\circ \), then: \[ x = y - 30^\circ \] Substituting the solutions for \( y \): - From \( y = -11.54^\circ + 360^\circ n \): \[ x = -11.54^\circ - 30^\circ + 360^\circ n = -41.54^\circ + 360^\circ n \] - From \( y = 191.54^\circ + 360^\circ n \): \[ x = 191.54^\circ - 30^\circ + 360^\circ n = 161.54^\circ + 360^\circ n \] 4. **Determine the Values of \( x \) Within \( (-180^\circ, 0^\circ) \):** - **First Solution:** \( x = -41.54^\circ + 360^\circ n \) - For \( n = 0 \): \[ x = -41.54^\circ \quad (\text{which is within } (-180^\circ, 0^\circ)) \] - For \( n = 1 \) or \( n = -1 \): \[ x = 318.46^\circ \quad \text{or} \quad x = -401.54^\circ \quad (\text{both are outside the interval}) \] - **Second Solution:** \( x = 161.54^\circ + 360^\circ n \) - For \( n = -1 \): \[ x = 161.54^\circ - 360^\circ = -198.46^\circ \quad (\text{which is outside } (-180^\circ, 0^\circ)) \] - For \( n = 0 \) or \( n = 1 \): \[ x = 161.54^\circ \quad \text{or} \quad x = 521.54^\circ \quad (\text{both are outside the interval}) \] 5. **Final Solution:** The only solution within \( (-180^\circ, 0^\circ) \) is: \[ x \approx -41.54^\circ \] **Rounded to one decimal place:** \[ x \approx -41.5^\circ \] --- ### **Summary of Solutions** - **Problem 7(a):** \[ \theta = \pm \frac{1}{2} \cos^{-1}(0.4) + \pi n \quad \text{for any integer } n \] *Alternatively in degrees:* \[ \theta = \pm 33.21^\circ + 180^\circ n \quad \text{for any integer } n \] - **Problem 7(b):** \[ \theta = \tan^{-1}\left(-\frac{14}{5}\right) + \pi n \quad \text{for any integer } n \] - **Problem 8:** \[ x \approx -41.5^\circ \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the general solution for \( \cos 2\theta = 0.4 \), we can rewrite it as \( 2\theta = \cos^{-1}(0.4) + 2k\pi \) or \( 2\theta = -\cos^{-1}(0.4) + 2k\pi \) where \( k \) is any integer. Dividing by 2 gives the general solution: \(\theta = \frac{\cos^{-1}(0.4)}{2} + k\pi\) or \(\theta = \frac{-\cos^{-1}(0.4)}{2} + k\pi\). For \( 5 \sin \theta + 14 \cos \theta = 0 \), we rearrange it to \( \tan \theta = -\frac{5}{14} \). The general solution is given by: \(\theta = \tan^{-1}\left(-\frac{5}{14}\right) + k\pi\) where \( k \) is any integer. --- To solve for \( x \) when \( \sin(x + 30^\circ) = -0.2 \), we first take the inverse sine: \( x + 30^\circ = \sin^{-1}(-0.2) + 360k \) or \( x + 30^\circ = 180^\circ - \sin^{-1}(-0.2) + 360k \), where \( k \) is any integer. Simplifying this gives: \( x = \sin^{-1}(-0.2) - 30^\circ + 360k \) and \( x = 180^\circ - \sin^{-1}(-0.2) - 30^\circ + 360k \). Now, remember to find \( k \) such that \( x \in (-180^\circ; 0^\circ) \).

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy