Answer
**Problem 7 Solutions:**
**(a) \( \cos 2\theta = 0.4 \):**
\[
\theta = \pm 33.21^\circ + 180^\circ n \quad \text{for any integer } n
\]
**(b) \( 5 \sin \theta + 14 \cos \theta = 0 \):**
\[
\theta = \tan^{-1}\left(-\frac{14}{5}\right) + \pi n \quad \text{for any integer } n
\]
**Problem 8 Solution:**
\[
x \approx -41.5^\circ
\]
Solution
Let's solve each of the problems step-by-step.
---
### **Problem 7**
**Find the general solution of each of the following equations:**
**(a) \( \cos 2\theta = 0.4 \)**
**Solution:**
To find the general solution for \( \cos 2\theta = 0.4 \), follow these steps:
1. **Find the Principal Solutions:**
\[
2\theta = \cos^{-1}(0.4) + 2\pi n \quad \text{and} \quad 2\theta = -\cos^{-1}(0.4) + 2\pi n
\]
where \( n \) is any integer.
2. **Solve for \( \theta \):**
Divide both sides by 2:
\[
\theta = \frac{1}{2} \cos^{-1}(0.4) + \pi n \quad \text{and} \quad \theta = -\frac{1}{2} \cos^{-1}(0.4) + \pi n
\]
3. **Combine the Solutions:**
The general solution can be concisely written as:
\[
\theta = \pm \frac{1}{2} \cos^{-1}(0.4) + \pi n \quad \text{where} \quad n \in \mathbb{Z}
\]
**Alternatively, in degrees:**
If you prefer to express the solution in degrees, calculate \( \cos^{-1}(0.4) \):
\[
\cos^{-1}(0.4) \approx 66.42^\circ
\]
Thus, the general solution becomes:
\[
\theta = \pm 33.21^\circ + 180^\circ n \quad \text{where} \quad n \in \mathbb{Z}
\]
---
**(b) \( 5 \sin \theta + 14 \cos \theta = 0 \)**
**Solution:**
To solve \( 5 \sin \theta + 14 \cos \theta = 0 \), follow these steps:
1. **Rearrange the Equation:**
\[
5 \sin \theta = -14 \cos \theta
\]
2. **Divide Both Sides by \( \cos \theta \) (assuming \( \cos \theta \neq 0 \)):**
\[
5 \tan \theta = -14
\]
\[
\tan \theta = -\frac{14}{5}
\]
3. **Find the General Solution:**
The general solution for \( \tan \theta = -\frac{14}{5} \) is:
\[
\theta = \tan^{-1}\left(-\frac{14}{5}\right) + \pi n \quad \text{where} \quad n \in \mathbb{Z}
\]
**Note:** \( \tan^{-1}\left(-\frac{14}{5}\right) \) can be calculated using a calculator to find the specific angles if needed.
---
### **Problem 8**
**Solve for \( x \) if \( \sin \left(x + 30^\circ\right) = -0.2 \) where \( x \in \left(-180^\circ; 0^\circ\right) \)**
**Solution:**
To solve the equation \( \sin(x + 30^\circ) = -0.2 \) within the interval \( x \in (-180^\circ, 0^\circ) \), follow these steps:
1. **Let \( y = x + 30^\circ \).** Then, the equation becomes:
\[
\sin y = -0.2
\]
2. **Find the General Solutions for \( y \):**
The general solutions for \( \sin y = -0.2 \) are:
\[
y = \sin^{-1}(-0.2) + 360^\circ n \quad \text{and} \quad y = 180^\circ - \sin^{-1}(-0.2) + 360^\circ n \quad \text{where} \quad n \in \mathbb{Z}
\]
Calculate \( \sin^{-1}(-0.2) \):
\[
\sin^{-1}(-0.2) \approx -11.54^\circ
\]
Therefore, the solutions are:
\[
y = -11.54^\circ + 360^\circ n
\]
\[
y = 180^\circ + 11.54^\circ + 360^\circ n = 191.54^\circ + 360^\circ n
\]
3. **Express \( x \) in Terms of \( y \):**
Since \( y = x + 30^\circ \), then:
\[
x = y - 30^\circ
\]
Substituting the solutions for \( y \):
- From \( y = -11.54^\circ + 360^\circ n \):
\[
x = -11.54^\circ - 30^\circ + 360^\circ n = -41.54^\circ + 360^\circ n
\]
- From \( y = 191.54^\circ + 360^\circ n \):
\[
x = 191.54^\circ - 30^\circ + 360^\circ n = 161.54^\circ + 360^\circ n
\]
4. **Determine the Values of \( x \) Within \( (-180^\circ, 0^\circ) \):**
- **First Solution:** \( x = -41.54^\circ + 360^\circ n \)
- For \( n = 0 \):
\[
x = -41.54^\circ \quad (\text{which is within } (-180^\circ, 0^\circ))
\]
- For \( n = 1 \) or \( n = -1 \):
\[
x = 318.46^\circ \quad \text{or} \quad x = -401.54^\circ \quad (\text{both are outside the interval})
\]
- **Second Solution:** \( x = 161.54^\circ + 360^\circ n \)
- For \( n = -1 \):
\[
x = 161.54^\circ - 360^\circ = -198.46^\circ \quad (\text{which is outside } (-180^\circ, 0^\circ))
\]
- For \( n = 0 \) or \( n = 1 \):
\[
x = 161.54^\circ \quad \text{or} \quad x = 521.54^\circ \quad (\text{both are outside the interval})
\]
5. **Final Solution:**
The only solution within \( (-180^\circ, 0^\circ) \) is:
\[
x \approx -41.54^\circ
\]
**Rounded to one decimal place:**
\[
x \approx -41.5^\circ
\]
---
### **Summary of Solutions**
- **Problem 7(a):**
\[
\theta = \pm \frac{1}{2} \cos^{-1}(0.4) + \pi n \quad \text{for any integer } n
\]
*Alternatively in degrees:*
\[
\theta = \pm 33.21^\circ + 180^\circ n \quad \text{for any integer } n
\]
- **Problem 7(b):**
\[
\theta = \tan^{-1}\left(-\frac{14}{5}\right) + \pi n \quad \text{for any integer } n
\]
- **Problem 8:**
\[
x \approx -41.5^\circ
\]
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution