Question
upstudy study bank question image url

(280) \( \sqrt[3]{\frac{1}{2}} \cdot \sqrt[4]{\frac{2}{3}} \)

Ask by Harrington Bowers. in Italy
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La risposta è circa 0.717.

Solution

Calcolare o semplificare l'espressione \( \sqrt[3]{\frac{1}{2}} \cdot \sqrt[4]{\frac{2}{3}} \). Calculate the value by following steps: - step0: Calculate: \(\sqrt[3]{\frac{1}{2}}\times \sqrt[4]{\frac{2}{3}}\) - step1: Simplify the root: \(\frac{\sqrt[3]{4}}{2}\sqrt[4]{\frac{2}{3}}\) - step2: Simplify the root: \(\frac{\sqrt[3]{4}}{2}\times \frac{\sqrt[4]{54}}{3}\) - step3: Multiply the fractions: \(\frac{\sqrt[3]{4}\times \sqrt[4]{54}}{2\times 3}\) - step4: Multiply: \(\frac{\sqrt[12]{256\times 54^{3}}}{6}\) La risposta è \( \frac{\sqrt[12]{256 \times 54^3}}{6} \) o approssimativamente 0.717189.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Let's simplify the expression \( \sqrt[3]{\frac{1}{2}} \cdot \sqrt[4]{\frac{2}{3}} \). Start with rewriting the roots in exponent form: \[ \sqrt[3]{\frac{1}{2}} = \left(\frac{1}{2}\right)^{1/3} = \frac{1^{1/3}}{2^{1/3}} = \frac{1}{2^{1/3}} \] \[ \sqrt[4]{\frac{2}{3}} = \left(\frac{2}{3}\right)^{1/4} = \frac{2^{1/4}}{3^{1/4}} \] Now combine both parts: \[ \sqrt[3]{\frac{1}{2}} \cdot \sqrt[4]{\frac{2}{3}} = \frac{1}{2^{1/3}} \cdot \frac{2^{1/4}}{3^{1/4}} = \frac{2^{1/4}}{2^{1/3} \cdot 3^{1/4}} \] Next, simplify the base of \(2\): \[ 2^{1/4} \div 2^{1/3} = 2^{1/4 - 1/3} = 2^{3/12 - 4/12} = 2^{-1/12} \] Now we can write it in a single fraction: \[ \frac{2^{-1/12}}{3^{1/4}} = \frac{1}{2^{1/12} \cdot 3^{1/4}} \] Finally, the simplified result is: \[ \frac{1}{2^{1/12} \cdot 3^{1/4}} \] Therefore, the original expression simplifies to: \[ \boxed{\frac{1}{2^{1/12} \cdot 3^{1/4}}} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy