Question
upstudy study bank question image url

Trabajo de Pensamiento Matemático II a) \( (5 x+d x)+(-2 x-7 x) \) b) \( \left(3 x^{2}-5 x+10\right)+\left(x^{2}+2 x-7\right)+\left(6 x^{2}-3 x-1\right) \) c) \( (2 a+3 b-5 c)+(8 a-10 b-4 c) \) d) \( \left(7 x^{2}-5 x+3\right)-\left(2 x^{2}+3 x+5\right) \) e) \( \left(7 x^{2}-5 x+3\right)-\left(2 x^{2}+3 x+5\right) \) f) \( \left(2 x^{3}-5 x^{2}+3 x-8\right)+\left(5 x^{2}+10 x-3\right)+\left(x^{3}+10 x+5\right) \) g) \( (8 a+b)-(-3 a+4) \) h) \( \left(5 h^{3}+2 h^{2}-3\right)+\left(h^{2}-3 h+11\right)+\left(2 h^{2}+20\right) \) i) \( (a+b)+(a-b) \) j) \( \left(-3 a^{3} b^{2}\right)\left(-5 a^{3}+2 a^{2} b-a b^{2}+7 b^{3}\right) \) K) \( (2 x+1)(5 x-3) \) L) \( \left(3 x^{4}-5 x^{3}-2 x^{2}-6 x+1\right)\left(x^{3}+5 x^{2}-x^{-1}\right) \) m) \( \left(8 x^{5}+16 x^{4}-24 x^{3}\right) \div\left(-8 x^{3}\right) \) n) \( \left(45 a^{7} b^{3}-60 a^{6} b^{2}+30 a^{5} b\right) \div 15 a^{4} b^{3} \)

Ask by Love Burton. in Mexico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a) \( -4x + dx \) b) \( 10x^{2} - 6x + 2 \) c) \( 10a - 7b - 9c \) d) \( 5x^{2} - 8x - 2 \) e) \( 5x^{2} - 8x - 2 \) f) \( 3x^{3} + 23x - 6 \) g) \( 11a + b - 4 \) h) \( 5h^{3} + 5h^{2} - 3h + 28 \) i) \( 2a \) j) \( 15a^{6}b^{2} - 6a^{5}b^{3} + 3a^{4}b^{4} - 21b^{5}a^{3} \) k) \( 10x^{2} - x - 3 \) l) \( \frac{3x^{8} + 10x^{7} - 32x^{4} - 27x^{6} + 10x^{3} - 16x^{5} + 2x^{2} + 6x - 1}{x} \) m) \( -x^{2} - 2x + 3 \) n) \( \frac{3a^{3}b^{2} - 4a^{2}b + 2a}{b^{2}} \) Si necesitas más ayuda o aclaraciones sobre algún problema, no dudes en preguntar.

Solution

Simplify the expression by following steps: - step0: Simplify: \(\left(8a+b\right)-\left(-3a+4\right)\) - step1: Remove the parentheses: \(8a+b-\left(-3a+4\right)\) - step2: Remove the parentheses: \(8a+b+3a-4\) - step3: Add the terms: \(11a+b-4\) Expand the expression \( (a+b)+(a-b) \) Simplify the expression by following steps: - step0: Simplify: \(\left(a+b\right)+\left(a-b\right)\) - step1: Remove the parentheses: \(a+b+a-b\) - step2: Add the terms: \(2a\) Expand the expression \( (5 x+d x)+(-2 x-7 x) \) Simplify the expression by following steps: - step0: Simplify: \(\left(5x+dx\right)+\left(-2x-7x\right)\) - step1: Remove the parentheses: \(5x+dx+\left(-2x-7x\right)\) - step2: Subtract the terms: \(5x+dx+\left(-9x\right)\) - step3: Remove the parentheses: \(5x+dx-9x\) - step4: Subtract the terms: \(-4x+dx\) Expand the expression \( \left(8 x^{5}+16 x^{4}-24 x^{3}\right) \div \left(-8 x^{3}\right) \) Simplify the expression by following steps: - step0: Divide the terms: \(\left(8x^{5}+16x^{4}-24x^{3}\right)\div \left(-8x^{3}\right)\) - step1: Rewrite the expression: \(\frac{8x^{5}+16x^{4}-24x^{3}}{-8x^{3}}\) - step2: Rewrite the fraction: \(-\frac{8x^{5}+16x^{4}-24x^{3}}{8x^{3}}\) - step3: Reduce the fraction: \(-\left(x^{2}+2x-3\right)\) - step4: Calculate: \(-x^{2}-2x+3\) Expand the expression \( (2 a+3 b-5 c)+(8 a-10 b-4 c) \) Simplify the expression by following steps: - step0: Simplify: \(\left(2a+3b-5c\right)+\left(8a-10b-4c\right)\) - step1: Remove the parentheses: \(2a+3b-5c+8a-10b-4c\) - step2: Add the terms: \(10a-7b-9c\) Expand the expression \( \left(5 h^{3}+2 h^{2}-3\right)+\left(h^{2}-3 h+11\right)+\left(2 h^{2}+20\right) \) Simplify the expression by following steps: - step0: Simplify: \(\left(5h^{3}+2h^{2}-3\right)+\left(h^{2}-3h+11\right)+\left(2h^{2}+20\right)\) - step1: Remove the parentheses: \(5h^{3}+2h^{2}-3+h^{2}-3h+11+2h^{2}+20\) - step2: Add the terms: \(5h^{3}+5h^{2}+28-3h\) Expand the expression \( (2 x+1)(5 x-3) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(2x+1\right)\left(5x-3\right)\) - step1: Apply the distributive property: \(2x\times 5x-2x\times 3+1\times 5x-1\times 3\) - step2: Multiply the terms: \(10x^{2}-6x+5x-3\) - step3: Add the terms: \(10x^{2}-x-3\) Expand the expression \( \left(7 x^{2}-5 x+3\right)-\left(2 x^{2}+3 x+5\right) \) Simplify the expression by following steps: - step0: Simplify: \(\left(7x^{2}-5x+3\right)-\left(2x^{2}+3x+5\right)\) - step1: Remove the parentheses: \(7x^{2}-5x+3-\left(2x^{2}+3x+5\right)\) - step2: Remove the parentheses: \(7x^{2}-5x+3-2x^{2}-3x-5\) - step3: Subtract the terms: \(5x^{2}-8x-2\) Expand the expression \( \left(7 x^{2}-5 x+3\right)-\left(2 x^{2}+3 x+5\right) \) Simplify the expression by following steps: - step0: Simplify: \(\left(7x^{2}-5x+3\right)-\left(2x^{2}+3x+5\right)\) - step1: Remove the parentheses: \(7x^{2}-5x+3-\left(2x^{2}+3x+5\right)\) - step2: Remove the parentheses: \(7x^{2}-5x+3-2x^{2}-3x-5\) - step3: Subtract the terms: \(5x^{2}-8x-2\) Expand the expression \( \left(3 x^{2}-5 x+10\right)+\left(x^{2}+2 x-7\right)+\left(6 x^{2}-3 x-1\right) \) Simplify the expression by following steps: - step0: Simplify: \(\left(3x^{2}-5x+10\right)+\left(x^{2}+2x-7\right)+\left(6x^{2}-3x-1\right)\) - step1: Remove the parentheses: \(3x^{2}-5x+10+x^{2}+2x-7+6x^{2}-3x-1\) - step2: Add the terms: \(10x^{2}-6x+2\) Expand the expression \( \left(45 a^{7} b^{3}-60 a^{6} b^{2}+30 a^{5} b\right) \div 15 a^{4} b^{3} \) Simplify the expression by following steps: - step0: Divide the terms: \(\left(45a^{7}b^{3}-60a^{6}b^{2}+30a^{5}b\right)\div \left(15a^{4}b^{3}\right)\) - step1: Rewrite the expression: \(\frac{45a^{7}b^{3}-60a^{6}b^{2}+30a^{5}b}{15a^{4}b^{3}}\) - step2: Reduce the fraction: \(\frac{3a^{3}b^{2}-4a^{2}b+2a}{b^{2}}\) Expand the expression \( \left(2 x^{3}-5 x^{2}+3 x-8\right)+\left(5 x^{2}+10 x-3\right)+\left(x^{3}+10 x+5\right) \) Simplify the expression by following steps: - step0: Simplify: \(\left(2x^{3}-5x^{2}+3x-8\right)+\left(5x^{2}+10x-3\right)+\left(x^{3}+10x+5\right)\) - step1: Remove the parentheses: \(2x^{3}-5x^{2}+3x-8+5x^{2}+10x-3+x^{3}+10x+5\) - step2: Add the terms: \(3x^{3}+23x-6\) Expand the expression \( \left(-3 a^{3} b^{2}\right)\left(-5 a^{3}+2 a^{2} b-a b^{2}+7 b^{3}\right) \) Simplify the expression by following steps: - step0: Calculate: \(\left(-3a^{3}b^{2}\right)\left(-5a^{3}+2a^{2}b-ab^{2}+7b^{3}\right)\) - step1: Remove the parentheses: \(-3a^{3}b^{2}\left(-5a^{3}+2a^{2}b-ab^{2}+7b^{3}\right)\) - step2: Rewrite the expression: \(-3\left(-5a^{3}+2a^{2}b-ab^{2}+7b^{3}\right)a^{3}b^{2}\) - step3: Multiply the expression: \(-3\left(-5a^{3}+2a^{2}b-ab^{2}+7b^{3}\right)b^{2}a^{3}\) - step4: Rearrange the terms: \(\left(15a^{3}-6a^{2}b+3ab^{2}-21b^{3}\right)b^{2}a^{3}\) - step5: Apply the distributive property: \(15a^{3}b^{2}a^{3}-6a^{2}b\times b^{2}a^{3}+3ab^{2}\times b^{2}a^{3}-21b^{3}\times b^{2}a^{3}\) - step6: Multiply the terms: \(15a^{6}b^{2}-6a^{5}b^{3}+3a^{4}b^{4}-21b^{5}a^{3}\) Expand the expression \( \left(3 x^{4}-5 x^{3}-2 x^{2}-6 x+1\right)\left(x^{3}+5 x^{2}-x^{-1}\right) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(3x^{4}-5x^{3}-2x^{2}-6x+1\right)\left(x^{3}+5x^{2}-x^{-1}\right)\) - step1: Rewrite the expression: \(\left(3x^{4}-5x^{3}-2x^{2}-6x+1\right)\times \frac{x^{4}+5x^{3}-1}{x}\) - step2: Multiply the terms: \(\frac{\left(3x^{4}-5x^{3}-2x^{2}-6x+1\right)\left(x^{4}+5x^{3}-1\right)}{x}\) - step3: Multiply the terms: \(\frac{3x^{8}+10x^{7}-32x^{4}-27x^{6}+10x^{3}-16x^{5}+2x^{2}+6x-1}{x}\) Aquí están las soluciones a cada uno de los problemas planteados: a) \( (5 x + d x) + (-2 x - 7 x) \) \[ = -4x + dx \] b) \( \left(3 x^{2}-5 x+10\right) + \left(x^{2}+2 x-7\right) + \left(6 x^{2}-3 x-1\right) \) \[ = 10x^{2} - 6x + 2 \] c) \( (2 a + 3 b - 5 c) + (8 a - 10 b - 4 c) \) \[ = 10a - 7b - 9c \] d) \( \left(7 x^{2}-5 x+3\right) - \left(2 x^{2}+3 x+5\right) \) \[ = 5x^{2} - 8x - 2 \] e) \( \left(7 x^{2}-5 x+3\right) - \left(2 x^{2}+3 x+5\right) \) \[ = 5x^{2} - 8x - 2 \] f) \( \left(2 x^{3}-5 x^{2}+3 x-8\right) + \left(5 x^{2}+10 x-3\right) + \left(x^{3}+10 x+5\right) \) \[ = 3x^{3} + 23x - 6 \] g) \( (8 a + b) - (-3 a + 4) \) \[ = 11a + b - 4 \] h) \( \left(5 h^{3}+2 h^{2}-3\right) + \left(h^{2}-3 h+11\right) + \left(2 h^{2}+20\right) \) \[ = 5h^{3} + 5h^{2} - 3h + 28 \] i) \( (a + b) + (a - b) \) \[ = 2a \] j) \( \left(-3 a^{3} b^{2}\right) \left(-5 a^{3}+2 a^{2} b-a b^{2}+7 b^{3}\right) \) \[ = 15a^{6}b^{2} - 6a^{5}b^{3} + 3a^{4}b^{4} - 21b^{5}a^{3} \] k) \( (2 x + 1)(5 x - 3) \) \[ = 10x^{2} - x - 3 \] l) \( \left(3 x^{4}-5 x^{3}-2 x^{2}-6 x+1\right) \left(x^{3}+5 x^{2}-x^{-1}\right) \) \[ = \frac{3x^{8} + 10x^{7} - 32x^{4} - 27x^{6} + 10x^{3} - 16x^{5} + 2x^{2} + 6x - 1}{x} \] m) \( \left(8 x^{5}+16 x^{4}-24 x^{3}\right) \div \left(-8 x^{3}\right) \) \[ = -x^{2} - 2x + 3 \] n) \( \left(45 a^{7} b^{3}-60 a^{6} b^{2}+30 a^{5} b\right) \div 15 a^{4} b^{3} \) \[ = \frac{3a^{3}b^{2}-4a^{2}b+2a}{b^{2}} \] Si necesitas más ayuda o aclaraciones sobre algún problema, no dudes en preguntar.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

¡Vamos a resolver algunos de estos problemas matemáticos con un poco de diversión! Para la parte (a), combinamos términos semejantes: \( (5x + dx) + (-2x - 7x) = (5 + d - 9)x = (d - 4)x \). Recuerda siempre sumar y restar los coeficientes de los mismos términos, ¡eso es la clave! En la parte (i), la expresión \( (a + b) + (a - b) \) se convierte en \( 2a \). Observa cómo los términos de \( b \) se cancelan. Así que, la próxima vez que veas términos opuestos, ¡no dudes en eliminarlos!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy