Question
Trabajo de Pensamiento Matemático II a) \( (5 x+d x)+(-2 x-7 x) \) b) \( \left(3 x^{2}-5 x+10\right)+\left(x^{2}+2 x-7\right)+\left(6 x^{2}-3 x-1\right) \) c) \( (2 a+3 b-5 c)+(8 a-10 b-4 c) \) d) \( \left(7 x^{2}-5 x+3\right)-\left(2 x^{2}+3 x+5\right) \) e) \( \left(7 x^{2}-5 x+3\right)-\left(2 x^{2}+3 x+5\right) \) f) \( \left(2 x^{3}-5 x^{2}+3 x-8\right)+\left(5 x^{2}+10 x-3\right)+\left(x^{3}+10 x+5\right) \) g) \( (8 a+b)-(-3 a+4) \) h) \( \left(5 h^{3}+2 h^{2}-3\right)+\left(h^{2}-3 h+11\right)+\left(2 h^{2}+20\right) \) i) \( (a+b)+(a-b) \) j) \( \left(-3 a^{3} b^{2}\right)\left(-5 a^{3}+2 a^{2} b-a b^{2}+7 b^{3}\right) \) K) \( (2 x+1)(5 x-3) \) L) \( \left(3 x^{4}-5 x^{3}-2 x^{2}-6 x+1\right)\left(x^{3}+5 x^{2}-x^{-1}\right) \) m) \( \left(8 x^{5}+16 x^{4}-24 x^{3}\right) \div\left(-8 x^{3}\right) \) n) \( \left(45 a^{7} b^{3}-60 a^{6} b^{2}+30 a^{5} b\right) \div 15 a^{4} b^{3} \)
Ask by Love Burton. in Mexico
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
a) \( -4x + dx \)
b) \( 10x^{2} - 6x + 2 \)
c) \( 10a - 7b - 9c \)
d) \( 5x^{2} - 8x - 2 \)
e) \( 5x^{2} - 8x - 2 \)
f) \( 3x^{3} + 23x - 6 \)
g) \( 11a + b - 4 \)
h) \( 5h^{3} + 5h^{2} - 3h + 28 \)
i) \( 2a \)
j) \( 15a^{6}b^{2} - 6a^{5}b^{3} + 3a^{4}b^{4} - 21b^{5}a^{3} \)
k) \( 10x^{2} - x - 3 \)
l) \( \frac{3x^{8} + 10x^{7} - 32x^{4} - 27x^{6} + 10x^{3} - 16x^{5} + 2x^{2} + 6x - 1}{x} \)
m) \( -x^{2} - 2x + 3 \)
n) \( \frac{3a^{3}b^{2} - 4a^{2}b + 2a}{b^{2}} \)
Si necesitas más ayuda o aclaraciones sobre algún problema, no dudes en preguntar.
Solution
Simplify the expression by following steps:
- step0: Simplify:
\(\left(8a+b\right)-\left(-3a+4\right)\)
- step1: Remove the parentheses:
\(8a+b-\left(-3a+4\right)\)
- step2: Remove the parentheses:
\(8a+b+3a-4\)
- step3: Add the terms:
\(11a+b-4\)
Expand the expression \( (a+b)+(a-b) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(a+b\right)+\left(a-b\right)\)
- step1: Remove the parentheses:
\(a+b+a-b\)
- step2: Add the terms:
\(2a\)
Expand the expression \( (5 x+d x)+(-2 x-7 x) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(5x+dx\right)+\left(-2x-7x\right)\)
- step1: Remove the parentheses:
\(5x+dx+\left(-2x-7x\right)\)
- step2: Subtract the terms:
\(5x+dx+\left(-9x\right)\)
- step3: Remove the parentheses:
\(5x+dx-9x\)
- step4: Subtract the terms:
\(-4x+dx\)
Expand the expression \( \left(8 x^{5}+16 x^{4}-24 x^{3}\right) \div \left(-8 x^{3}\right) \)
Simplify the expression by following steps:
- step0: Divide the terms:
\(\left(8x^{5}+16x^{4}-24x^{3}\right)\div \left(-8x^{3}\right)\)
- step1: Rewrite the expression:
\(\frac{8x^{5}+16x^{4}-24x^{3}}{-8x^{3}}\)
- step2: Rewrite the fraction:
\(-\frac{8x^{5}+16x^{4}-24x^{3}}{8x^{3}}\)
- step3: Reduce the fraction:
\(-\left(x^{2}+2x-3\right)\)
- step4: Calculate:
\(-x^{2}-2x+3\)
Expand the expression \( (2 a+3 b-5 c)+(8 a-10 b-4 c) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(2a+3b-5c\right)+\left(8a-10b-4c\right)\)
- step1: Remove the parentheses:
\(2a+3b-5c+8a-10b-4c\)
- step2: Add the terms:
\(10a-7b-9c\)
Expand the expression \( \left(5 h^{3}+2 h^{2}-3\right)+\left(h^{2}-3 h+11\right)+\left(2 h^{2}+20\right) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(5h^{3}+2h^{2}-3\right)+\left(h^{2}-3h+11\right)+\left(2h^{2}+20\right)\)
- step1: Remove the parentheses:
\(5h^{3}+2h^{2}-3+h^{2}-3h+11+2h^{2}+20\)
- step2: Add the terms:
\(5h^{3}+5h^{2}+28-3h\)
Expand the expression \( (2 x+1)(5 x-3) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(2x+1\right)\left(5x-3\right)\)
- step1: Apply the distributive property:
\(2x\times 5x-2x\times 3+1\times 5x-1\times 3\)
- step2: Multiply the terms:
\(10x^{2}-6x+5x-3\)
- step3: Add the terms:
\(10x^{2}-x-3\)
Expand the expression \( \left(7 x^{2}-5 x+3\right)-\left(2 x^{2}+3 x+5\right) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(7x^{2}-5x+3\right)-\left(2x^{2}+3x+5\right)\)
- step1: Remove the parentheses:
\(7x^{2}-5x+3-\left(2x^{2}+3x+5\right)\)
- step2: Remove the parentheses:
\(7x^{2}-5x+3-2x^{2}-3x-5\)
- step3: Subtract the terms:
\(5x^{2}-8x-2\)
Expand the expression \( \left(7 x^{2}-5 x+3\right)-\left(2 x^{2}+3 x+5\right) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(7x^{2}-5x+3\right)-\left(2x^{2}+3x+5\right)\)
- step1: Remove the parentheses:
\(7x^{2}-5x+3-\left(2x^{2}+3x+5\right)\)
- step2: Remove the parentheses:
\(7x^{2}-5x+3-2x^{2}-3x-5\)
- step3: Subtract the terms:
\(5x^{2}-8x-2\)
Expand the expression \( \left(3 x^{2}-5 x+10\right)+\left(x^{2}+2 x-7\right)+\left(6 x^{2}-3 x-1\right) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(3x^{2}-5x+10\right)+\left(x^{2}+2x-7\right)+\left(6x^{2}-3x-1\right)\)
- step1: Remove the parentheses:
\(3x^{2}-5x+10+x^{2}+2x-7+6x^{2}-3x-1\)
- step2: Add the terms:
\(10x^{2}-6x+2\)
Expand the expression \( \left(45 a^{7} b^{3}-60 a^{6} b^{2}+30 a^{5} b\right) \div 15 a^{4} b^{3} \)
Simplify the expression by following steps:
- step0: Divide the terms:
\(\left(45a^{7}b^{3}-60a^{6}b^{2}+30a^{5}b\right)\div \left(15a^{4}b^{3}\right)\)
- step1: Rewrite the expression:
\(\frac{45a^{7}b^{3}-60a^{6}b^{2}+30a^{5}b}{15a^{4}b^{3}}\)
- step2: Reduce the fraction:
\(\frac{3a^{3}b^{2}-4a^{2}b+2a}{b^{2}}\)
Expand the expression \( \left(2 x^{3}-5 x^{2}+3 x-8\right)+\left(5 x^{2}+10 x-3\right)+\left(x^{3}+10 x+5\right) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(2x^{3}-5x^{2}+3x-8\right)+\left(5x^{2}+10x-3\right)+\left(x^{3}+10x+5\right)\)
- step1: Remove the parentheses:
\(2x^{3}-5x^{2}+3x-8+5x^{2}+10x-3+x^{3}+10x+5\)
- step2: Add the terms:
\(3x^{3}+23x-6\)
Expand the expression \( \left(-3 a^{3} b^{2}\right)\left(-5 a^{3}+2 a^{2} b-a b^{2}+7 b^{3}\right) \)
Simplify the expression by following steps:
- step0: Calculate:
\(\left(-3a^{3}b^{2}\right)\left(-5a^{3}+2a^{2}b-ab^{2}+7b^{3}\right)\)
- step1: Remove the parentheses:
\(-3a^{3}b^{2}\left(-5a^{3}+2a^{2}b-ab^{2}+7b^{3}\right)\)
- step2: Rewrite the expression:
\(-3\left(-5a^{3}+2a^{2}b-ab^{2}+7b^{3}\right)a^{3}b^{2}\)
- step3: Multiply the expression:
\(-3\left(-5a^{3}+2a^{2}b-ab^{2}+7b^{3}\right)b^{2}a^{3}\)
- step4: Rearrange the terms:
\(\left(15a^{3}-6a^{2}b+3ab^{2}-21b^{3}\right)b^{2}a^{3}\)
- step5: Apply the distributive property:
\(15a^{3}b^{2}a^{3}-6a^{2}b\times b^{2}a^{3}+3ab^{2}\times b^{2}a^{3}-21b^{3}\times b^{2}a^{3}\)
- step6: Multiply the terms:
\(15a^{6}b^{2}-6a^{5}b^{3}+3a^{4}b^{4}-21b^{5}a^{3}\)
Expand the expression \( \left(3 x^{4}-5 x^{3}-2 x^{2}-6 x+1\right)\left(x^{3}+5 x^{2}-x^{-1}\right) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(3x^{4}-5x^{3}-2x^{2}-6x+1\right)\left(x^{3}+5x^{2}-x^{-1}\right)\)
- step1: Rewrite the expression:
\(\left(3x^{4}-5x^{3}-2x^{2}-6x+1\right)\times \frac{x^{4}+5x^{3}-1}{x}\)
- step2: Multiply the terms:
\(\frac{\left(3x^{4}-5x^{3}-2x^{2}-6x+1\right)\left(x^{4}+5x^{3}-1\right)}{x}\)
- step3: Multiply the terms:
\(\frac{3x^{8}+10x^{7}-32x^{4}-27x^{6}+10x^{3}-16x^{5}+2x^{2}+6x-1}{x}\)
Aquí están las soluciones a cada uno de los problemas planteados:
a) \( (5 x + d x) + (-2 x - 7 x) \)
\[
= -4x + dx
\]
b) \( \left(3 x^{2}-5 x+10\right) + \left(x^{2}+2 x-7\right) + \left(6 x^{2}-3 x-1\right) \)
\[
= 10x^{2} - 6x + 2
\]
c) \( (2 a + 3 b - 5 c) + (8 a - 10 b - 4 c) \)
\[
= 10a - 7b - 9c
\]
d) \( \left(7 x^{2}-5 x+3\right) - \left(2 x^{2}+3 x+5\right) \)
\[
= 5x^{2} - 8x - 2
\]
e) \( \left(7 x^{2}-5 x+3\right) - \left(2 x^{2}+3 x+5\right) \)
\[
= 5x^{2} - 8x - 2
\]
f) \( \left(2 x^{3}-5 x^{2}+3 x-8\right) + \left(5 x^{2}+10 x-3\right) + \left(x^{3}+10 x+5\right) \)
\[
= 3x^{3} + 23x - 6
\]
g) \( (8 a + b) - (-3 a + 4) \)
\[
= 11a + b - 4
\]
h) \( \left(5 h^{3}+2 h^{2}-3\right) + \left(h^{2}-3 h+11\right) + \left(2 h^{2}+20\right) \)
\[
= 5h^{3} + 5h^{2} - 3h + 28
\]
i) \( (a + b) + (a - b) \)
\[
= 2a
\]
j) \( \left(-3 a^{3} b^{2}\right) \left(-5 a^{3}+2 a^{2} b-a b^{2}+7 b^{3}\right) \)
\[
= 15a^{6}b^{2} - 6a^{5}b^{3} + 3a^{4}b^{4} - 21b^{5}a^{3}
\]
k) \( (2 x + 1)(5 x - 3) \)
\[
= 10x^{2} - x - 3
\]
l) \( \left(3 x^{4}-5 x^{3}-2 x^{2}-6 x+1\right) \left(x^{3}+5 x^{2}-x^{-1}\right) \)
\[
= \frac{3x^{8} + 10x^{7} - 32x^{4} - 27x^{6} + 10x^{3} - 16x^{5} + 2x^{2} + 6x - 1}{x}
\]
m) \( \left(8 x^{5}+16 x^{4}-24 x^{3}\right) \div \left(-8 x^{3}\right) \)
\[
= -x^{2} - 2x + 3
\]
n) \( \left(45 a^{7} b^{3}-60 a^{6} b^{2}+30 a^{5} b\right) \div 15 a^{4} b^{3} \)
\[
= \frac{3a^{3}b^{2}-4a^{2}b+2a}{b^{2}}
\]
Si necesitas más ayuda o aclaraciones sobre algún problema, no dudes en preguntar.
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Mind Expander
¡Vamos a resolver algunos de estos problemas matemáticos con un poco de diversión! Para la parte (a), combinamos términos semejantes: \( (5x + dx) + (-2x - 7x) = (5 + d - 9)x = (d - 4)x \). Recuerda siempre sumar y restar los coeficientes de los mismos términos, ¡eso es la clave! En la parte (i), la expresión \( (a + b) + (a - b) \) se convierte en \( 2a \). Observa cómo los términos de \( b \) se cancelan. Así que, la próxima vez que veas términos opuestos, ¡no dudes en eliminarlos!