Question
upstudy study bank question image url

Factorise completely: 1. \( t x-t y+r x-r y \) 2. \( b y-a x+b x-a y \) 3. \( 3 a^{2}-a x+6 a b-2 b x \) 4. \( x^{3}+3 x^{2}-x-3 \) 5. \( 2 a-1-2 a b+b \) 6. \( 6 x^{2}-a y-2 a x+3 x y \) 7. \( 4 a^{2}-4 b^{2}-b^{3}+a^{2} b \) 8. \( 6 x^{2}-x^{5}-6+x^{3} \) 9. \( x^{4}-x^{2}-x^{2} y^{2}+y^{2} \) 10. \( x^{3}+y^{3}+x+y \)

Ask by Pollard Mejia. in South Africa
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( (t + r)(x - y) \) 2. \( (b - a)(x + y) \) 3. \( (3a - x)(a + 2b) \) 4. \( (x -1)(x +1)(x + 3) \) 5. \( (2a +1)(1 - b) \) 6. \( (2x + y)(3x - a) \) 7. \( (a - b)(a + b)(4 + b) \) 8. \( -(x^3 -6)(x -1)(x +1) \) 9. \( (x -1)(x +1)(x - y)(x + y) \) 10. \( (x + y)(x^2 - xy + y^2 +1) \)

Solution

Let's factorize each expression step by step. --- **1.** \( t x - t y + r x - r y \) **Factorization:** \[ t x - t y + r x - r y = t(x - y) + r(x - y) = (t + r)(x - y) \] --- **2.** \( b y - a x + b x - a y \) **Factorization:** \[ b y - a x + b x - a y = b y - a y + b x - a x = y(b - a) + x(b - a) = (b - a)(x + y) \] Alternatively, factoring out \(-1\) from \((b - a)\): \[ = -(a - b)(x + y) \] --- **3.** \( 3 a^{2} - a x + 6 a b - 2 b x \) **Factorization:** \[ 3a^2 - ax + 6ab - 2bx = 3a^2 + 6ab - ax - 2bx = 3a(a + 2b) - x(a + 2b) = (3a - x)(a + 2b) \] --- **4.** \( x^{3} + 3 x^{2} - x - 3 \) **Factorization:** \[ x^3 + 3x^2 - x - 3 = x^2(x + 3) -1(x + 3) = (x^2 -1)(x + 3) = (x -1)(x +1)(x + 3) \] --- **5.** \( 2 a - 1 - 2 a b + b \) **Factorization:** \[ 2a - 1 - 2ab + b = 2a(1 - b) + 1(b -1) = (2a +1)(1 - b) \] Alternatively: \[ = (2a + 1)(- (b -1)) = -(2a +1)(b -1) \] --- **6.** \( 6 x^{2} - a y - 2 a x + 3 x y \) **Factorization:** Rearrange terms: \[ 6x^2 - 2ax + 3xy - ay \] Factor by grouping: \[ (6x^2 -2ax) + (3xy - ay) = 2x(3x - a) + y(3x - a) = (2x + y)(3x - a) \] --- **7.** \( 4 a^{2} - 4 b^{2} - b^{3} + a^{2} b \) **Factorization:** Rearrange and group: \[ 4a^2 + a^2b - 4b^2 - b^3 = a^2(4 + b) - b^2(4 + b) = (a^2 - b^2)(4 + b) = (a - b)(a + b)(4 + b) \] --- **8.** \( 6 x^{2} - x^{5} -6 +x^{3} \) **Factorization:** Rearrange: \[ -x^5 + x^3 + 6x^2 -6 = -x^5 + x^3 +6x^2 -6 \] Factor by grouping: \[ (-x^5 + x^3) + (6x^2 -6) = -x^3(x^2 -1) +6(x^2 -1) = ( -x^3 +6)(x^2 -1) \] Factor further: \[ (x^2 -1) = (x -1)(x +1) \] Thus: \[ (-x^3 +6)(x -1)(x +1) \quad \text{or} \quad -(x^3 -6)(x -1)(x +1) \] --- **9.** \( x^{4} -x^{2} -x^{2} y^{2} + y^{2} \) **Factorization:** Rearrange: \[ x^4 - x^2 y^2 -x^2 + y^2 = x^2(x^2 - y^2 -1) + y^2 \] Notice that \(x^2 - y^2 = (x - y)(x + y)\), but let's try factoring by grouping: \[ x^4 - x^2 y^2 - x^2 + y^2 = (x^4 - x^2 y^2) - (x^2 - y^2) =x^2(x^2 - y^2) -1(x^2 - y^2) = (x^2 -1)(x^2 - y^2) = (x -1)(x +1)(x - y)(x + y) \] --- **10.** \( x^{3} + y^{3} + x + y \) **Factorization:** Recall that \(x^3 + y^3 = (x + y)(x^2 -xy + y^2)\). Adding \(x + y\): \[ x^3 + y^3 + x + y = (x + y)(x^2 -xy + y^2) + (x + y) = (x + y)(x^2 - xy + y^2 +1) \] Alternatively, factor out \((x+y)\): \[ (x + y)(x^2 - xy + y^2 +1) \] Thus, the complete factorization is: \[ (x + y)(x^2 - xy + y^2 +1) \] --- **Summary of All Factorizations:** 1. \((t + r)(x - y)\) 2. \((b - a)(x + y)\) 3. \((3a - x)(a + 2b)\) 4. \((x -1)(x +1)(x + 3)\) 5. \((2a +1)(1 - b)\) 6. \((2x + y)(3x - a)\) 7. \((a - b)(a + b)(4 + b)\) 8. \(-(x^3 -6)(x -1)(x +1)\) 9. \((x -1)(x +1)(x - y)(x + y)\) 10. \((x + y)(x^2 - xy + y^2 +1)\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Sure, let's factor these expressions completely! 1. \( t(x - y) + r(x - y) = (x - y)(t + r) \) 2. \( (b - a) y + (b - a) x = (b - a)(y + x) \) 3. \( a(3a + 6b - x) - 2b(x - 3) = (3a + 6b - x)(a - 2b) \) 4. \( x^2(x + 3) - 1(x + 3) = (x + 3)(x^2 - 1) = (x + 3)(x - 1)(x + 1) \) 5. \( (2a + b - 1) - 2ab = (2a - 1) + (b - 2ab) = (2a - 1) + b(1 - 2a) = (2a - 1)(1 - b) \) 6. \( (2x - a)(3x + y) \) 7. \( (4a^2 - b^3) - 4b^2 + a^2b = (2a + b)(2a - b) + b(2a - b) = (2a - b)(2a + b - 4) \) 8. \( x^2(6 - x^3) - 6 + x^3 = (6 - x^3)(x^2 - 1) = (6 - x^3)(x - 1)(x + 1) \) 9. \( (x^2 - y^2)(x^2 + 1) + (y^2)(x^2 - 1) = (x^2 - y^2 + y^2)(x^2 + 1) = (x^2 + y^2)(x^2 - 1) = (x - 1)(x + 1)(x^2 + y^2) \) 10. \( (x + y)(x^2 - xy + y^2 + 1) \) Enjoy the joy of factoring! It's like solving a puzzle! If you have any questions about the steps, feel free to ask.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy