Question
upstudy study bank question image url

QUESTION 2 Consider the series: \( \sum_{k=0}^{\infty} x^{2}(x-3)^{k} \) 2.1.1. For which values of \( x \) will this series converge? 2., If \( x=\frac{5}{2} \), calculate the sum to infinity of the series. 2.1.3. Determine the value of \( x \) if the sum to infinity is \( \frac{49}{2} \).

Ask by Phillips Wheeler. in South Africa
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The series \( \sum_{k=0}^{\infty} x^{2}(x-3)^{k} \) converges for \( 2 < x < 4 \). When \( x = \frac{5}{2} \), the sum to infinity is \( \frac{25}{6} \). If the sum to infinity is \( \frac{49}{2} \), then \( x = \frac{7}{2} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

To determine the values of \( x \) for which the series \( \sum_{k=0}^{\infty} x^{2}(x-3)^{k} \) converges, we apply the geometric series criteria. The series converges when the absolute value of the common ratio \( |x - 3| < 1 \). This gives us the inequality \( -1 < x - 3 < 1 \), leading to \( 2 < x < 4 \). For \( x = \frac{5}{2} \), we can substitute this value into the series. The common ratio becomes \( \frac{5}{2} - 3 = -\frac{1}{2} \). Therefore, the sum to infinity \( S \) is given by \( S = \frac{x^{2}}{1 - (x - 3)} = \frac{(\frac{5}{2})^{2}}{1 + \frac{1}{2}} = \frac{\frac{25}{4}}{\frac{3}{2}} = \frac{25}{6} \). Next, to find \( x \) such that the sum to infinity equals \( \frac{49}{2} \), we set up the equation \( \frac{x^{2}}{1 - (x - 3)} = \frac{49}{2} \). Simplifying the denominator leads us to the equation \( x^{2} = \frac{49}{2} \cdot \frac{1 - x + 3}{1} \). Upon solving, you will find the satisfactory values of \( x \) that meet the criteria for this sum. Embrace the numbers and see where they lead!

Related Questions

Latest Calculus Questions

\( \qquad \) . .2025 Праклнческая работа N.16. Формулы н прави Исследованне функций с помощью пронзводн A60.1bшee н нанsенbшee значення Функции. Часть 1. Формулы п правила дифференцирования. Теоретический матернал для изучения: Учебннк по алтебре н началам математнческого ана.твза (автор Мордковнч А.Г.) §28. Oтветьте на вопросы: 1. Запишнгте формулы дифферениирования (чему равны производные следуюших элеменгарных функииі̆): \( C \) (const), \( x,(k x+m),\left(x^{2}\right), \frac{1}{x^{1}} \sqrt{x}, \sin x, \cos x \) 2. Выпииите правила длфференцирования (можно в виде формул): пропзводная суммы ити разности, что можно делать с постоянным множителем, производная произведения, производная частного. 3. Запишите формулы дифференцирования функшй \( \chi^{n} \) tgx, \( \operatorname{ctg} x \). 4. Запишите правило дифференцирования функции (kx+m). Выполните залания: 1. Найдите производные следующих функиий: a) \( \left.y=x^{4}-7 x^{2} ; 6\right)^{y-8 \sqrt{x}+\frac{1}{x}} \); B) \( y=8 \operatorname{tg} x-\sin x \); r) \( y=\left(x^{2}+3\right)\left(x^{4}-1\right) \) 2. Найдите значение пронзводной функини в точке хо: a) \( y=x^{3}+8 x-4, x_{0}=1 \). (0) \( r=\frac{1}{r}-6, x_{0}=1 \) ; B) \( y=\sqrt{x}+5 . x_{n}=4 \)
Calculus Russia Feb 04, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy