Find the zero(s) of \( f(x)=8.53 x^{2}-9.81 x-5.69 \) to three decimal places. If there is more than one zero, write all them on the same line, separated by commas.
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To find the zeros of the quadratic function \( f(x) = 8.53 x^{2} - 9.81 x - 5.69 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 8.53 \), \( b = -9.81 \), and \( c = -5.69 \). First, calculate the discriminant: \[ b^2 - 4ac = (-9.81)^2 - 4 \cdot 8.53 \cdot (-5.69) = 96.4561 + 193.5244 = 289.9805 \] Now, applying the quadratic formula: \[ x = \frac{-(-9.81) \pm \sqrt{289.9805}}{2 \cdot 8.53} = \frac{9.81 \pm 17.038}{17.06} \] Calculating the two possible values for \( x \): 1. \( x_1 = \frac{9.81 + 17.038}{17.06} \approx \frac{26.848}{17.06} \approx 1.576 \) 2. \( x_2 = \frac{9.81 - 17.038}{17.06} \approx \frac{-7.228}{17.06} \approx -0.424 \) Thus, the zeros of the function, rounded to three decimal places, are: \[ \boxed{1.576, -0.424} \]