Question
upstudy study bank question image url

\( \cos ^ { 2 } \alpha + ( \frac { \cos \alpha } { \tan \alpha } ) ^ { 2 } = \frac { 1 } { \tan ^ { 2 } a } \)

Ask by Hodges Ellis. in Spain
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The equation holds true for all angles \(\alpha\) except those that are integer multiples of \(\frac{\pi}{2}\).

Solution

Solve the equation by following steps: - step0: Solve for \(\alpha\): \(\cos^{2}\left(\alpha \right)+\left(\frac{\cos\left(\alpha \right)}{\tan\left(\alpha \right)}\right)^{2}=\frac{1}{\tan^{2}\left(\alpha \right)}\) - step1: Find the domain: \(\cos^{2}\left(\alpha \right)+\left(\frac{\cos\left(\alpha \right)}{\tan\left(\alpha \right)}\right)^{2}=\frac{1}{\tan^{2}\left(\alpha \right)},\alpha \neq \frac{k\pi }{2},k \in \mathbb{Z}\) - step2: Rewrite the expression: \(\cos^{2}\left(\alpha \right)+\frac{\cos^{2}\left(\alpha \right)}{\tan^{2}\left(\alpha \right)}=\frac{1}{\tan^{2}\left(\alpha \right)}\) - step3: Rewrite the expression: \(\cos^{2}\left(\alpha \right)+\frac{\cos^{2}\left(\alpha \right)}{\left(\frac{\sin\left(\alpha \right)}{\cos\left(\alpha \right)}\right)^{2}}=\frac{1}{\left(\frac{\sin\left(\alpha \right)}{\cos\left(\alpha \right)}\right)^{2}}\) - step4: Simplify: \(\cos^{2}\left(\alpha \right)+\frac{\cos^{4}\left(\alpha \right)}{\sin^{2}\left(\alpha \right)}=\frac{1}{\left(\frac{\sin\left(\alpha \right)}{\cos\left(\alpha \right)}\right)^{2}}\) - step5: Expand the expression: \(\cos^{2}\left(\alpha \right)+\frac{\cos^{4}\left(\alpha \right)}{\sin^{2}\left(\alpha \right)}=\frac{1}{\frac{\sin^{2}\left(\alpha \right)}{\cos^{2}\left(\alpha \right)}}\) - step6: Calculate: \(\cos^{2}\left(\alpha \right)+\frac{\cos^{4}\left(\alpha \right)}{\sin^{2}\left(\alpha \right)}=\frac{\cos^{2}\left(\alpha \right)}{\sin^{2}\left(\alpha \right)}\) - step7: Multiply both sides of the equation by LCD: \(\left(\cos^{2}\left(\alpha \right)+\frac{\cos^{4}\left(\alpha \right)}{\sin^{2}\left(\alpha \right)}\right)\sin^{2}\left(\alpha \right)=\frac{\cos^{2}\left(\alpha \right)}{\sin^{2}\left(\alpha \right)}\times \sin^{2}\left(\alpha \right)\) - step8: Simplify the equation: \(\cos^{2}\left(\alpha \right)\sin^{2}\left(\alpha \right)+\cos^{4}\left(\alpha \right)=\cos^{2}\left(\alpha \right)\) - step9: Rewrite the expression: \(\cos^{2}\left(\alpha \right)=\cos^{2}\left(\alpha \right)\) - step10: Cancel equal terms: \(0=0\) - step11: The statement is true: \(\alpha \in \mathbb{R}\) - step12: Check if the solution is in the defined range: \(\alpha \in \mathbb{R},\alpha \neq \frac{k\pi }{2},k \in \mathbb{Z}\) - step13: Find the intersection: \(\alpha \neq \frac{k\pi }{2},k \in \mathbb{Z}\) To solve the equation \[ \cos ^ { 2 } \alpha + \left( \frac { \cos \alpha } { \tan \alpha } \right) ^ { 2 } = \frac { 1 } { \tan ^ { 2 } \alpha }, \] we can start by simplifying the left-hand side. 1. **Understanding the terms**: - Recall that \(\tan \alpha = \frac{\sin \alpha}{\cos \alpha}\). - Therefore, \(\tan^2 \alpha = \frac{\sin^2 \alpha}{\cos^2 \alpha}\). 2. **Substituting \(\tan \alpha\)**: - The term \(\frac{1}{\tan^2 \alpha}\) can be rewritten as \(\frac{\cos^2 \alpha}{\sin^2 \alpha}\). 3. **Rewriting the equation**: - The left-hand side becomes: \[ \cos^2 \alpha + \left( \frac{\cos \alpha}{\frac{\sin \alpha}{\cos \alpha}} \right)^2 = \cos^2 \alpha + \left( \frac{\cos^2 \alpha}{\sin \alpha} \right)^2. \] 4. **Combining terms**: - The equation simplifies to: \[ \cos^2 \alpha + \frac{\cos^4 \alpha}{\sin^2 \alpha} = \frac{\cos^2 \alpha}{\sin^2 \alpha}. \] 5. **Setting the equation**: - Rearranging gives: \[ \cos^2 \alpha + \frac{\cos^4 \alpha}{\sin^2 \alpha} - \frac{\cos^2 \alpha}{\sin^2 \alpha} = 0. \] 6. **Factoring out common terms**: - This leads to: \[ \cos^2 \alpha \left( 1 + \frac{\cos^2 \alpha - 1}{\sin^2 \alpha} \right) = 0. \] 7. **Finding solutions**: - The first factor gives \(\cos^2 \alpha = 0\), which implies \(\alpha = \frac{\pi}{2} + k\pi\) for \(k \in \mathbb{Z}\). - The second factor leads to a contradiction since \(1 + \frac{\cos^2 \alpha - 1}{\sin^2 \alpha} = 0\) does not yield valid solutions. 8. **Conclusion**: - The only valid solutions are when \(\alpha \neq \frac{k\pi}{2}\) for \(k \in \mathbb{Z}\). Thus, the solution to the equation is: \[ \alpha \neq \frac{k\pi }{2}, k \in \mathbb{Z}. \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let’s break down the equation and see how it can be simplified! First, we know that \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \) and therefore \( \tan^2 \alpha = \frac{\sin^2 \alpha}{\cos^2 \alpha} \). This means that \( \frac{1}{\tan^2 \alpha} = \frac{\cos^2 \alpha}{\sin^2 \alpha} \). Now, let’s simplify the left side step by step. First, we take \( \frac{\cos \alpha}{\tan \alpha} \) which simplifies to \( \frac{\cos^2 \alpha}{\sin \alpha} \). So squaring that gives us \( \left( \frac{\cos^2 \alpha}{\sin \alpha} \right)^2 = \frac{\cos^4 \alpha}{\sin^2 \alpha} \). Combine this with the \( \cos^2 \alpha \) term: \[ \cos^2 \alpha + \frac{\cos^4 \alpha}{\sin^2 \alpha} \] Replace \( \sin^2 \alpha \) with \( 1 - \cos^2 \alpha \) since \( \sin^2 \alpha + \cos^2 \alpha = 1 \), leading to: \[ \cos^2 \alpha \cdot \frac{(1 - \cos^2 \alpha) + \cos^2 \alpha}{(1 - \cos^2 \alpha)} \] This can be quite complex—leading us toward further algebraic manipulation or trigonometric identities to reach simplification or solutions. Keep tinkering with those identities, and you might find the elegant solution hiding in there!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy