Answer
The equation holds true for all angles \(\alpha\) except those that are integer multiples of \(\frac{\pi}{2}\).
Solution
Solve the equation by following steps:
- step0: Solve for \(\alpha\):
\(\cos^{2}\left(\alpha \right)+\left(\frac{\cos\left(\alpha \right)}{\tan\left(\alpha \right)}\right)^{2}=\frac{1}{\tan^{2}\left(\alpha \right)}\)
- step1: Find the domain:
\(\cos^{2}\left(\alpha \right)+\left(\frac{\cos\left(\alpha \right)}{\tan\left(\alpha \right)}\right)^{2}=\frac{1}{\tan^{2}\left(\alpha \right)},\alpha \neq \frac{k\pi }{2},k \in \mathbb{Z}\)
- step2: Rewrite the expression:
\(\cos^{2}\left(\alpha \right)+\frac{\cos^{2}\left(\alpha \right)}{\tan^{2}\left(\alpha \right)}=\frac{1}{\tan^{2}\left(\alpha \right)}\)
- step3: Rewrite the expression:
\(\cos^{2}\left(\alpha \right)+\frac{\cos^{2}\left(\alpha \right)}{\left(\frac{\sin\left(\alpha \right)}{\cos\left(\alpha \right)}\right)^{2}}=\frac{1}{\left(\frac{\sin\left(\alpha \right)}{\cos\left(\alpha \right)}\right)^{2}}\)
- step4: Simplify:
\(\cos^{2}\left(\alpha \right)+\frac{\cos^{4}\left(\alpha \right)}{\sin^{2}\left(\alpha \right)}=\frac{1}{\left(\frac{\sin\left(\alpha \right)}{\cos\left(\alpha \right)}\right)^{2}}\)
- step5: Expand the expression:
\(\cos^{2}\left(\alpha \right)+\frac{\cos^{4}\left(\alpha \right)}{\sin^{2}\left(\alpha \right)}=\frac{1}{\frac{\sin^{2}\left(\alpha \right)}{\cos^{2}\left(\alpha \right)}}\)
- step6: Calculate:
\(\cos^{2}\left(\alpha \right)+\frac{\cos^{4}\left(\alpha \right)}{\sin^{2}\left(\alpha \right)}=\frac{\cos^{2}\left(\alpha \right)}{\sin^{2}\left(\alpha \right)}\)
- step7: Multiply both sides of the equation by LCD:
\(\left(\cos^{2}\left(\alpha \right)+\frac{\cos^{4}\left(\alpha \right)}{\sin^{2}\left(\alpha \right)}\right)\sin^{2}\left(\alpha \right)=\frac{\cos^{2}\left(\alpha \right)}{\sin^{2}\left(\alpha \right)}\times \sin^{2}\left(\alpha \right)\)
- step8: Simplify the equation:
\(\cos^{2}\left(\alpha \right)\sin^{2}\left(\alpha \right)+\cos^{4}\left(\alpha \right)=\cos^{2}\left(\alpha \right)\)
- step9: Rewrite the expression:
\(\cos^{2}\left(\alpha \right)=\cos^{2}\left(\alpha \right)\)
- step10: Cancel equal terms:
\(0=0\)
- step11: The statement is true:
\(\alpha \in \mathbb{R}\)
- step12: Check if the solution is in the defined range:
\(\alpha \in \mathbb{R},\alpha \neq \frac{k\pi }{2},k \in \mathbb{Z}\)
- step13: Find the intersection:
\(\alpha \neq \frac{k\pi }{2},k \in \mathbb{Z}\)
To solve the equation
\[
\cos ^ { 2 } \alpha + \left( \frac { \cos \alpha } { \tan \alpha } \right) ^ { 2 } = \frac { 1 } { \tan ^ { 2 } \alpha },
\]
we can start by simplifying the left-hand side.
1. **Understanding the terms**:
- Recall that \(\tan \alpha = \frac{\sin \alpha}{\cos \alpha}\).
- Therefore, \(\tan^2 \alpha = \frac{\sin^2 \alpha}{\cos^2 \alpha}\).
2. **Substituting \(\tan \alpha\)**:
- The term \(\frac{1}{\tan^2 \alpha}\) can be rewritten as \(\frac{\cos^2 \alpha}{\sin^2 \alpha}\).
3. **Rewriting the equation**:
- The left-hand side becomes:
\[
\cos^2 \alpha + \left( \frac{\cos \alpha}{\frac{\sin \alpha}{\cos \alpha}} \right)^2 = \cos^2 \alpha + \left( \frac{\cos^2 \alpha}{\sin \alpha} \right)^2.
\]
4. **Combining terms**:
- The equation simplifies to:
\[
\cos^2 \alpha + \frac{\cos^4 \alpha}{\sin^2 \alpha} = \frac{\cos^2 \alpha}{\sin^2 \alpha}.
\]
5. **Setting the equation**:
- Rearranging gives:
\[
\cos^2 \alpha + \frac{\cos^4 \alpha}{\sin^2 \alpha} - \frac{\cos^2 \alpha}{\sin^2 \alpha} = 0.
\]
6. **Factoring out common terms**:
- This leads to:
\[
\cos^2 \alpha \left( 1 + \frac{\cos^2 \alpha - 1}{\sin^2 \alpha} \right) = 0.
\]
7. **Finding solutions**:
- The first factor gives \(\cos^2 \alpha = 0\), which implies \(\alpha = \frac{\pi}{2} + k\pi\) for \(k \in \mathbb{Z}\).
- The second factor leads to a contradiction since \(1 + \frac{\cos^2 \alpha - 1}{\sin^2 \alpha} = 0\) does not yield valid solutions.
8. **Conclusion**:
- The only valid solutions are when \(\alpha \neq \frac{k\pi}{2}\) for \(k \in \mathbb{Z}\).
Thus, the solution to the equation is:
\[
\alpha \neq \frac{k\pi }{2}, k \in \mathbb{Z}.
\]
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution