Question
upstudy study bank question image url

Find the acute angle \( A \). \( \tan A=0.176 \) \( A \approx \square^{\circ} \) (Round to the nearest tenth as needed.)

Ask by Moreno Howell. in the United States
Feb 05,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( A \approx 10.0^\circ \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

To find the acute angle \( A \) such that \( \tan A = 0.176 \), you can use the inverse tangent function, often denoted as \( \tan^{-1} \) or \( \arctan \). Calculating \( A \): \[ A \approx \tan^{-1}(0.176) \approx 10.0^{\circ} \] (Rounded to the nearest tenth) Therefore, \( A \approx 10.0^{\circ} \).

Related Questions

our tout nombre réel \( \theta \), pour tout nombre entier relatif \( n \), molvre Exemple \[ (\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta \] \( \theta \) étant un nombre réel, exprimons \( \cos 4 \theta \) et \( \sin 4 \theta \) en fonction de \( \cos \theta \) et \( \sin \theta \). \[ \begin{array}{l} =\left(\cos ^{2} \theta+\sin ^{2} \theta\right)^{2}-8 \cos ^{2} \theta \sin ^{2} \theta \\ =1-8 \cos ^{2} \theta \sin ^{2} \theta=1-8 \cos ^{2} \theta+8 \cos ^{4} \theta \end{array} \] Formules d'Euler Propriété \[ \begin{array}{l} \text { n a } \cos 4 \theta+i \sin 4 \theta=(\cos \theta+i \sin \theta)^{4} \\ =\cos ^{4} \theta+4 \cos ^{3} \theta(i \sin \theta)+6 \cos ^{2} \theta(i \sin \theta)^{2}+4 \cos \theta(i \sin \theta)^{3}+(i \sin \theta)^{4} \\ =\cos ^{4} \theta+\sin ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+4 i\left(\cos ^{3} \theta \sin \theta-\cos \theta \sin ^{3} \theta\right) \\ \begin{aligned} \sin 4 \theta & =4\left(\cos ^{3} \theta \sin \theta-\cos \theta \sin ^{3} \theta\right) \\ & =4 \cos \theta \sin \theta\left(\cos ^{2} \theta\right. \end{aligned} \\ \cos 4 \theta=\cos ^{4} \theta+\sin ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta \\ =4 \cos \theta \sin \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \text {. } \\ \text { onc : } \quad \cos 4 \theta=\cos ^{4} \theta+\sin ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta \\ =\left(\cos ^{2} \theta+\sin ^{2} \theta\right)^{2}-8 \cos ^{2} \theta \sin ^{2} \theta \end{array} \]
Trigonometry Côte d'Ivoire Feb 05, 2025

Latest Trigonometry Questions

our tout nombre réel \( \theta \), pour tout nombre entier relatif \( n \), molvre Exemple \[ (\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta \] \( \theta \) étant un nombre réel, exprimons \( \cos 4 \theta \) et \( \sin 4 \theta \) en fonction de \( \cos \theta \) et \( \sin \theta \). \[ \begin{array}{l} =\left(\cos ^{2} \theta+\sin ^{2} \theta\right)^{2}-8 \cos ^{2} \theta \sin ^{2} \theta \\ =1-8 \cos ^{2} \theta \sin ^{2} \theta=1-8 \cos ^{2} \theta+8 \cos ^{4} \theta \end{array} \] Formules d'Euler Propriété \[ \begin{array}{l} \text { n a } \cos 4 \theta+i \sin 4 \theta=(\cos \theta+i \sin \theta)^{4} \\ =\cos ^{4} \theta+4 \cos ^{3} \theta(i \sin \theta)+6 \cos ^{2} \theta(i \sin \theta)^{2}+4 \cos \theta(i \sin \theta)^{3}+(i \sin \theta)^{4} \\ =\cos ^{4} \theta+\sin ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+4 i\left(\cos ^{3} \theta \sin \theta-\cos \theta \sin ^{3} \theta\right) \\ \begin{aligned} \sin 4 \theta & =4\left(\cos ^{3} \theta \sin \theta-\cos \theta \sin ^{3} \theta\right) \\ & =4 \cos \theta \sin \theta\left(\cos ^{2} \theta\right. \end{aligned} \\ \cos 4 \theta=\cos ^{4} \theta+\sin ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta \\ =4 \cos \theta \sin \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \text {. } \\ \text { onc : } \quad \cos 4 \theta=\cos ^{4} \theta+\sin ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta \\ =\left(\cos ^{2} \theta+\sin ^{2} \theta\right)^{2}-8 \cos ^{2} \theta \sin ^{2} \theta \end{array} \]
Trigonometry Côte d'Ivoire Feb 05, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy