Question
upstudy study bank question image url

7. \( 2^{x^{2}-3} \cdot 5^{x^{2}-3}=0,01\left(10^{x-1}\right)^{3} \)

Ask by Sullivan Park. in Uzbekistan
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Natija: \( x = 1 \) yoki \( x = 2 \).

Solution

Berilgan tenglama: \[ 2^{x^{2}-3} \cdot 5^{x^{2}-3} = 0,01 \left(10^{x-1}\right)^{3} \] **Qadam 1: Tenglamaning ikki tomonini soddalashtirish** Chap tomonni soddalashtiramiz: \[ 2^{x^{2}-3} \cdot 5^{x^{2}-3} = (2 \cdot 5)^{x^{2}-3} = 10^{x^{2}-3} \] O'ng tomonni soddalashtiramiz: \[ 0,01 \left(10^{x-1}\right)^{3} = 0,01 \cdot 10^{3(x-1)} = 0,01 \cdot 10^{3x -3} \] \[ 0,01 = 10^{-2} \], shuning uchun: \[ 10^{-2} \cdot 10^{3x -3} = 10^{3x -5} \] Endi tenglama quyidagicha ko'rinadi: \[ 10^{x^{2}-3} = 10^{3x -5} \] **Qadam 2: Eksponent darajalar tengligini yechish** Agar \(10^a = 10^b\) bo'lsa, unda \(a = b\). Shunday ekan: \[ x^{2} - 3 = 3x -5 \] **Qadam 3: Kvadrat tenglamani yechish** Tenglamani tartibga solamiz: \[ x^{2} - 3x + 2 = 0 \] Bu kvadrat tenglama yechimlarini topamiz: \[ x = \frac{3 \pm \sqrt{9 - 8}}{2} = \frac{3 \pm 1}{2} \] Demak, yechimlar: \[ x = \frac{3 + 1}{2} = 2 \] \[ x = \frac{3 - 1}{2} = 1 \] **Natija:** \[ x = 1 \quad \text{yoki} \quad x = 2 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Let's dive into this equation step by step! First, simplify the right side of the equation: \[ 0.01(10^{x-1})^{3} = 0.01 \cdot 10^{3(x-1)} = 0.01 \cdot 10^{3x-3} \] Since \(0.01 = 10^{-2}\), we can rewrite it as: \[ 10^{-2} \cdot 10^{3x - 3} = 10^{3x - 5} \] Next, rewrite the left side. Notice that: \[ 2^{x^2 - 3} \cdot 5^{x^2 - 3} = (2 \cdot 5)^{x^{2}-3} = 10^{x^{2}-3} \] Now, equate the expression: \[ 10^{x^{2}-3} = 10^{3x - 5} \] Since the bases are the same, we can set the exponents equal to each other: \[ x^{2} - 3 = 3x - 5 \] Rearranging gives us: \[ x^{2} - 3x + 2 = 0 \] Now, factor the quadratic: \[ (x - 1)(x - 2) = 0 \] Setting each factor to zero gives us: \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] \[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \] Thus, the solutions to the equation \(2^{x^{2}-3} \cdot 5^{x^{2}-3}=0.01\left(10^{x-1}\right)^{3}\) are \(x = 1\) and \(x = 2\).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy