7. \( 2^{x^{2}-3} \cdot 5^{x^{2}-3}=0,01\left(10^{x-1}\right)^{3} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let's dive into this equation step by step! First, simplify the right side of the equation: \[ 0.01(10^{x-1})^{3} = 0.01 \cdot 10^{3(x-1)} = 0.01 \cdot 10^{3x-3} \] Since \(0.01 = 10^{-2}\), we can rewrite it as: \[ 10^{-2} \cdot 10^{3x - 3} = 10^{3x - 5} \] Next, rewrite the left side. Notice that: \[ 2^{x^2 - 3} \cdot 5^{x^2 - 3} = (2 \cdot 5)^{x^{2}-3} = 10^{x^{2}-3} \] Now, equate the expression: \[ 10^{x^{2}-3} = 10^{3x - 5} \] Since the bases are the same, we can set the exponents equal to each other: \[ x^{2} - 3 = 3x - 5 \] Rearranging gives us: \[ x^{2} - 3x + 2 = 0 \] Now, factor the quadratic: \[ (x - 1)(x - 2) = 0 \] Setting each factor to zero gives us: \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] \[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \] Thus, the solutions to the equation \(2^{x^{2}-3} \cdot 5^{x^{2}-3}=0.01\left(10^{x-1}\right)^{3}\) are \(x = 1\) and \(x = 2\).