Question
upstudy study bank question image url

Remember to follow BODMAS, where exponents and roots follow immediately after Brackets, Example 3: calculate \( \begin{array}{ll}\text { a) } \frac{1}{4}+\frac{1}{3} \times\left(\frac{4}{5}+\frac{1}{10}\right) & \text { b) }-\left(-\frac{1}{2}\right)^{3}-\left(-2 \frac{1}{2}\right)^{2}\end{array} \)

Ask by Mann Daniel. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Example 3:** a) \( \frac{1}{4} + \frac{1}{3} \times \left( \frac{4}{5} + \frac{1}{10} \right) = \frac{11}{20} \) b) \( -\left(-\frac{1}{2}\right)^{3} - \left( -2 \frac{1}{2} \right)^{2} = -\frac{49}{8} \)

Solution

Certainly! Let's solve both parts of Example 3 step by step using the BODMAS/BIDMAS rule, which stands for: - **B**rackets - **O**rders (i.e., powers and roots, etc.) - **D**ivision and **M**ultiplication - **A**ddition and **S**ubtraction ### Example 3: #### a) \( \frac{1}{4} + \frac{1}{3} \times \left( \frac{4}{5} + \frac{1}{10} \right) \) **Step 1: Solve Inside the Brackets** First, calculate the expression inside the brackets: \[ \frac{4}{5} + \frac{1}{10} \] To add these fractions, find a common denominator. The least common denominator (LCD) for 5 and 10 is 10. \[ \frac{4}{5} = \frac{8}{10} \quad \text{(since } 4 \times 2 = 8 \text{ and } 5 \times 2 = 10\text{)} \] Now, add the fractions: \[ \frac{8}{10} + \frac{1}{10} = \frac{9}{10} \] So, the expression becomes: \[ \frac{1}{4} + \frac{1}{3} \times \frac{9}{10} \] **Step 2: Perform the Multiplication** Next, multiply \( \frac{1}{3} \) by \( \frac{9}{10} \): \[ \frac{1}{3} \times \frac{9}{10} = \frac{9}{30} = \frac{3}{10} \quad \text{(simplified by dividing numerator and denominator by 3)} \] Now, the expression is: \[ \frac{1}{4} + \frac{3}{10} \] **Step 3: Perform the Addition** Add \( \frac{1}{4} \) and \( \frac{3}{10} \): To add these fractions, find a common denominator. The LCD for 4 and 10 is 20. \[ \frac{1}{4} = \frac{5}{20} \quad \text{and} \quad \frac{3}{10} = \frac{6}{20} \] Now, add them: \[ \frac{5}{20} + \frac{6}{20} = \frac{11}{20} \] **Answer for part a:** \( \frac{11}{20} \) --- #### b) \( -\left(-\frac{1}{2}\right)^{3} - \left( -2 \frac{1}{2} \right)^{2} \) First, let's interpret the mixed number \( -2 \frac{1}{2} \): \[ -2 \frac{1}{2} = -\frac{5}{2} \] So the expression becomes: \[ -\left(-\frac{1}{2}\right)^{3} - \left(-\frac{5}{2}\right)^{2} \] **Step 1: Calculate Each Term Separately** 1. **First Term:** \( -\left(-\frac{1}{2}\right)^{3} \) - Calculate the exponent: \[ \left(-\frac{1}{2}\right)^{3} = -\frac{1}{8} \] - Apply the negative sign outside: \[ -\left(-\frac{1}{8}\right) = \frac{1}{8} \] 2. **Second Term:** \( -\left(-\frac{5}{2}\right)^{2} \) - Calculate the exponent: \[ \left(-\frac{5}{2}\right)^{2} = \frac{25}{4} \] - Apply the negative sign outside: \[ -\frac{25}{4} \] **Step 2: Combine the Results** Now, combine both terms: \[ \frac{1}{8} - \frac{25}{4} \] To subtract these fractions, find a common denominator. The LCD for 8 and 4 is 8. \[ \frac{25}{4} = \frac{50}{8} \] Now, subtract: \[ \frac{1}{8} - \frac{50}{8} = -\frac{49}{8} \] This can also be expressed as a mixed number: \[ -\frac{49}{8} = -6 \frac{1}{8} \] **Answer for part b:** \( -\frac{49}{8} \) or \( -6 \frac{1}{8} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve the first expression, \( \frac{1}{4} + \frac{1}{3} \times \left(\frac{4}{5} + \frac{1}{10}\right) \), we first calculate the bracket. \( \frac{4}{5} + \frac{1}{10} = \frac{8}{10} + \frac{1}{10} = \frac{9}{10} \). Next, multiply by \( \frac{1}{3} \): \( \frac{1}{3} \times \frac{9}{10} = \frac{3}{10} \). Finally, add \( \frac{1}{4} \): \( \frac{1}{4} + \frac{3}{10} = \frac{5}{20} + \frac{12}{40} = \frac{29}{40} \). For the second expression, \( -\left(-\frac{1}{2}\right)^{3} - \left(-2 \frac{1}{2}\right)^{2} \), start with the exponents. The first part gives \( -(-\frac{1}{2})^{3} = -(-\frac{1}{8}) = \frac{1}{8} \). The second part, converting \( -2 \frac{1}{2} \) to \( -\frac{5}{2} \), gives \( -\left(-\frac{5}{2}\right)^{2} = -\frac{25}{4} \). Therefore, the entire expression simplifies to \( \frac{1}{8} - \frac{25}{4} \), getting a common denominator to yield \( \frac{1 - 50}{8} = -\frac{49}{8} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy