Question
upstudy study bank question image url

Use the rational zeros theorem to list all possible rational zeros of the following,
Be sure that no value in your list appears more thah onç.

Ask by Klein Warner. in the United States
Mar 31,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The possible rational zeros are .

Solution

The given polynomial is
Step 1. Write the polynomial in standard form (arranged in descending order):
Step 2. Identify the leading coefficient and the constant term.
The leading coefficient is and the constant term is .
Step 3. List the factors of the constant term and the factors of the leading coefficient.
  • Factors of are: , , .
  • Factors of are: , , , .
Step 4. Use the Rational Zeros Theorem.
Any possible rational zero can be written in the form
where is a factor of and is a factor of .
Step 5. Form all possible values (and simplify them so that no duplicates occur).
  • For :
  • For :
    • (duplicate)
    • (duplicate)
    • (duplicate)
  • For :
    • (duplicate)
    • (duplicate)
    • (duplicate)
Step 6. List the distinct possible rational zeros.
The possible rational zeros are:

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To apply the rational zeros theorem, we first need to arrange the polynomial in standard form. The polynomial given is:
Now, we identify the leading coefficient and the constant term. The leading coefficient (the coefficient of the term with the highest degree, in this case) and the constant term (the free term ) are crucial.
The possible rational zeros can be determined using the formula where the potential zeros are , with as the factors of the constant term and as the factors of the leading coefficient .
Factors of : ±1, ±2, ±4
Factors of : ±1, ±2, ±4, ±8
Putting this all together, the possible rational zeros are:
  • For : ±1, ±1/2, ±1/4, ±1/8
  • For : ±2, ±2/2 (which is ±1 but already listed), ±2/4 (which is ±1/2 but already listed), ±2/8 (which is ±1/4 but already listed)
  • For : ±4, ±4/2 (which is ±2 but already listed), ±4/4 (which is ±1 but already listed), ±4/8 (which is ±1/2 but already listed)
Compiling these unique values, we have:
±1, ±2, ±4, ±1/2, ±1/4, ±1/8
So the list of all possible rational zeros of is: ±1, ±2, ±4, ±1/2, ±1/4, ±1/8.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy