Question
upstudy study bank question image url

Solve the inequality \( 3 y^{2}+4 y-32>0 \) Show your working clearly.

Ask by Gross Fuentes. in Qatar
Jan 18,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The inequality \( 3y^{2} + 4y - 32 > 0 \) holds true when \( y < -4 \) or \( y > \frac{8}{3} \).

Solution

To solve the inequality \( 3y^{2} + 4y - 32 > 0 \), we'll follow these steps: 1. **Find the Roots of the Equation \( 3y^{2} + 4y - 32 = 0 \)** 2. **Determine the Intervals Defined by the Roots** 3. **Test Each Interval to See Where the Inequality Holds** --- ### 1. Find the Roots of the Equation \( 3y^{2} + 4y - 32 = 0 \) We'll use the **quadratic formula** to find the roots of the quadratic equation: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Where: - \( a = 3 \) - \( b = 4 \) - \( c = -32 \) **Calculate the Discriminant (\( D \)):** \[ D = b^2 - 4ac = 4^2 - 4 \times 3 \times (-32) = 16 + 384 = 400 \] **Find the Square Root of the Discriminant:** \[ \sqrt{D} = \sqrt{400} = 20 \] **Compute the Roots:** \[ y = \frac{-4 \pm 20}{2 \times 3} = \frac{-4 \pm 20}{6} \] This gives us two roots: 1. **First Root (\( y_1 \)):** \[ y_1 = \frac{-4 + 20}{6} = \frac{16}{6} = \frac{8}{3} \] 2. **Second Root (\( y_2 \)):** \[ y_2 = \frac{-4 - 20}{6} = \frac{-24}{6} = -4 \] So, the roots are \( y = -4 \) and \( y = \frac{8}{3} \). --- ### 2. Determine the Intervals Defined by the Roots The roots divide the real number line into three intervals: 1. \( y < -4 \) 2. \( -4 < y < \frac{8}{3} \) 3. \( y > \frac{8}{3} \) --- ### 3. Test Each Interval to See Where the Inequality Holds To determine where \( 3y^{2} + 4y - 32 > 0 \), we'll test a value from each interval. 1. **Interval \( y < -4 \):** - **Test Point:** \( y = -5 \) - **Compute:** \( 3(-5)^2 + 4(-5) - 32 = 3(25) - 20 - 32 = 75 - 20 - 32 = 23 \) - **Result:** \( 23 > 0 \) (Inequality holds) 2. **Interval \( -4 < y < \frac{8}{3} \):** - **Test Point:** \( y = 0 \) - **Compute:** \( 3(0)^2 + 4(0) - 32 = 0 + 0 - 32 = -32 \) - **Result:** \( -32 < 0 \) (Inequality does not hold) 3. **Interval \( y > \frac{8}{3} \):** - **Test Point:** \( y = 3 \) - **Compute:** \( 3(3)^2 + 4(3) - 32 = 3(9) + 12 - 32 = 27 + 12 - 32 = 7 \) - **Result:** \( 7 > 0 \) (Inequality holds) --- ### **Conclusion** The inequality \( 3y^{2} + 4y - 32 > 0 \) holds true in the intervals where \( y < -4 \) or \( y > \frac{8}{3} \). **Solution Set:** \[ y \in (-\infty, -4) \cup \left( \frac{8}{3}, \infty \right) \] --- **Graphical Representation:** A parabola representing \( 3y^{2} + 4y - 32 \) opens upwards (since the coefficient of \( y^2 \) is positive). It crosses the y-axis at the roots \( y = -4 \) and \( y = \frac{8}{3} \). The regions where the parabola is above the x-axis correspond to the solution of the inequality.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the inequality \( 3y^2 + 4y - 32 > 0 \), we will first find the roots of the corresponding equation \( 3y^2 + 4y - 32 = 0 \) using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 3 \), \( b = 4 \), and \( c = -32 \). Plugging in these values: \[ y = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 3 \cdot (-32)}}{2 \cdot 3} \] This simplifies to: \[ y = \frac{-4 \pm \sqrt{16 + 384}}{6} \] \[ y = \frac{-4 \pm \sqrt{400}}{6} \] Calculating \( \sqrt{400} = 20 \), we have: \[ y = \frac{-4 \pm 20}{6} \] Calculating the two possible roots: 1. \( y = \frac{-4 + 20}{6} = \frac{16}{6} = \frac{8}{3} \) 2. \( y = \frac{-4 - 20}{6} = \frac{-24}{6} = -4 \) Now that we have the roots, \( y = -4 \) and \( y = \frac{8}{3} \), we can analyze the sign of \( 3y^2 + 4y - 32 \) in the intervals defined by these roots: \( (-\infty, -4) \), \( (-4, \frac{8}{3}) \), and \( (\frac{8}{3}, +\infty) \). We'll test a value from each interval: 1. For the interval \( (-\infty, -4) \), let's choose \( y = -5 \): \[ 3(-5)^2 + 4(-5) - 32 = 75 - 20 - 32 = 23 > 0 \] 2. For the interval \( (-4, \frac{8}{3}) \), let's choose \( y = 0 \): \[ 3(0)^2 + 4(0) - 32 = -32 < 0 \] 3. For the interval \( (\frac{8}{3}, +\infty) \), let's choose \( y = 3 \): \[ 3(3)^2 + 4(3) - 32 = 27 + 12 - 32 = 7 > 0 \] Now we summarize the results: - The expression \( 3y^2 + 4y - 32 > 0 \) in the intervals \( (-\infty, -4) \) and \( (\frac{8}{3}, +\infty) \). In conclusion, the solution set to the inequality \( 3y^2 + 4y - 32 > 0 \) is: \[ y \in (-\infty, -4) \cup \left( \frac{8}{3}, +\infty \right) \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy