Answer
The simplified forms are:
1. \( -11 p^{7} q + 10 p^{3} + 6 q + 4 \)
2. \( \frac{1}{3}x^5 - \frac{8}{9}x^4 y - \frac{1}{3}x^3 y^{2} - \frac{1}{2}\frac{x^2}{y^2} + \frac{4}{3}\frac{x}{y} + \frac{1}{2} \)
Solution
Let's simplify each of the given expressions step by step.
---
### 1. Simplifying \( 10 p^{3} - 11 p^{7} q + 6 q + 4 \)
The expression \(10 p^{3} - 11 p^{7} q + 6 q + 4\) is a polynomial with distinct terms. Since none of the terms are like terms (they have different variables or exponents), the expression is already in its simplest form.
**Simplified Form:**
\[
-11 p^{7} q + 10 p^{3} + 6 q + 4
\]
---
### 2. Simplifying \( \left(\frac{2}{3} x^{3} - \frac{1}{y^{2}}\right) \left(\frac{1}{2} x^{2} - \frac{4}{3} x y - \frac{1}{2} y^{2}\right) \) (where \( y \neq 0 \))
To simplify the product of these two polynomials, we'll use the distributive property (also known as the FOIL method for binomials), multiplying each term in the first polynomial by each term in the second polynomial.
**Step-by-Step Multiplication:**
1. **Multiply \(\frac{2}{3} x^3\) by each term in the second polynomial:**
\[
\frac{2}{3} x^3 \times \frac{1}{2} x^2 = \frac{1}{3} x^5
\]
\[
\frac{2}{3} x^3 \times \left(-\frac{4}{3} x y\right) = -\frac{8}{9} x^4 y
\]
\[
\frac{2}{3} x^3 \times \left(-\frac{1}{2} y^2\right) = -\frac{1}{3} x^3 y^2
\]
2. **Multiply \(-\frac{1}{y^2}\) by each term in the second polynomial:**
\[
-\frac{1}{y^2} \times \frac{1}{2} x^2 = -\frac{1}{2} \frac{x^2}{y^2}
\]
\[
-\frac{1}{y^2} \times \left(-\frac{4}{3} x y\right) = \frac{4}{3} \frac{x}{y}
\]
\[
-\frac{1}{y^2} \times \left(-\frac{1}{2} y^2\right) = \frac{1}{2}
\]
**Combine All the Terms:**
\[
\frac{1}{3} x^5 - \frac{8}{9} x^4 y - \frac{1}{3} x^3 y^2 - \frac{1}{2} \frac{x^2}{y^2} + \frac{4}{3} \frac{x}{y} + \frac{1}{2}
\]
**Final Simplified Form:**
\[
\frac{1}{3}x^5 - \frac{8}{9}x^4 y - \frac{1}{3}x^3 y^{2} - \frac{1}{2}\frac{x^2}{y^2} + \frac{4}{3}\frac{x}{y} + \frac{1}{2}
\]
---
**Summary:**
1. **First Expression:**
\[
-11 p^{7} q + 10 p^{3} + 6 q + 4
\]
2. **Second Expression:**
\[
\frac{1}{3}x^5 - \frac{8}{9}x^4 y - \frac{1}{3}x^3 y^{2} - \frac{1}{2}\frac{x^2}{y^2} + \frac{4}{3}\frac{x}{y} + \frac{1}{2}
\]
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution