335. Točka \( R\left(\frac{5}{4}, 1,-\frac{1}{6}\right) \) je razpolovišče daljice \( A B \). Zapišite koordinati točke \( B \), če je \( A\left(\frac{1}{2}, 3, \frac{1}{2}\right) \).
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Da najdemo koordinate točke \( B \), uporabimo formulo za izračun razpolovišča daljice \( A B \). Koordinate točke \( R \) so povprečje koordinat točk \( A \) in \( B \): \[ R_x = \frac{A_x + B_x}{2},\ R_y = \frac{A_y + B_y}{2},\ R_z = \frac{A_z + B_z}{2}. \] Vstavimo podatke: \[ \frac{1}{2} + B_x = 2 \cdot \frac{5}{4} = \frac{10}{4} \Rightarrow B_x = \frac{10}{4} - \frac{1}{2} = \frac{10}{4} - \frac{2}{4} = \frac{8}{4} = 2. \] Nato za \( y \) koordinato: \[ 3 + B_y = 2 \cdot 1 \Rightarrow B_y = 2 - 3 = -1. \] In še za \( z \) koordinato: \[ \frac{1}{2} + B_z = 2 \cdot -\frac{1}{6} = -\frac{1}{3} \Rightarrow B_z = -\frac{1}{3} - \frac{1}{2} = -\frac{2}{6} - \frac{3}{6} = -\frac{5}{6}. \] Torej so koordinate točke \( B \) naslednje: \[ B\left(2, -1, -\frac{5}{6}\right). \]