Evaluate the function \( f(x)=x^{2}+9 x+1 \) at the given values of the independent variable and simplify. \( \begin{array}{lll}\text { a. } f(-8) & \text { b. } f(x+5) & \text { c. } f(-x)\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To evaluate the function \( f(x) = x^{2} + 9x + 1 \) at the given values, let's compute each part step by step. **a.** To find \( f(-8) \): \[ f(-8) = (-8)^{2} + 9(-8) + 1 \] Calculating \( f(-8) \): \[ f(-8) = 64 - 72 + 1 = -7 \] So, \( f(-8) = -7 \). --- **b.** To evaluate \( f(x + 5) \): \[ f(x + 5) = (x + 5)^{2} + 9(x + 5) + 1 \] Expanding \( f(x + 5) \): \[ = (x^{2} + 10x + 25) + (9x + 45) + 1 \] \[ = x^{2} + 10x + 25 + 9x + 45 + 1 \] \[ = x^{2} + 19x + 71 \] So, \( f(x + 5) = x^{2} + 19x + 71 \). --- **c.** Now, let's compute \( f(-x) \): \[ f(-x) = (-x)^{2} + 9(-x) + 1 \] Calculating \( f(-x) \): \[ = x^{2} - 9x + 1 \] So, \( f(-x) = x^{2} - 9x + 1 \). --- In summary: - \( f(-8) = -7 \) - \( f(x + 5) = x^{2} + 19x + 71 \) - \( f(-x) = x^{2} - 9x + 1 \)