(5) \( (9-2)^{2}-\left|2^{2}-3^{2}\right|+2 \) (6) \( \frac{8\left[14-\left(7+4^{2}\right)\right]}{|-12|-|-8|} \) 4m²-5m when \( m=-4 \) (8) \( 3 x^{2} y-y^{2} \) when \( x=-2 \) and \( y=5 \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Let’s break down these mathematical expressions together, shall we? For the first expression \( (9-2)^{2}-\left|2^{2}-3^{2}\right|+2 \): First, simplify \( 9-2 \), which is \( 7 \); then \( 7^{2} = 49 \). Next, calculate \( 2^{2} - 3^{2} = 4 - 9 = -5 \), so the absolute value becomes \( |-5| = 5 \). Putting it all together, \( 49 - 5 + 2 = 46 \). Now for the second expression \( \frac{8\left[14-\left(7+4^{2}\right)\right]}{|-12|-|-8|} \): Start with \( 4^{2} = 16 \), so \( 7 + 16 = 23 \). Therefore, \( 14 - 23 = -9 \) and the expression becomes \( \frac{8 \times (-9)}{12 - 8} = \frac{-72}{4} = -18 \). For \( 4m^{2} - 5m \) when \( m = -4 \): Substituting gives \( 4(-4)^{2} - 5(-4) = 64 + 20 = 84 \). Lastly, calculating \( 3x^{2}y - y^{2} \) when \( x = -2 \) and \( y = 5 \): Here, \( (-2)^{2} = 4 \) so we get \( 3 \times 4 \times 5 - 5^{2} = 60 - 25 = 35 \). So the final answers are: 1. 46 2. -18 3. 84 4. 35