Find the dot product of these two vectors. \[ \begin{array}{l}\overrightarrow{\mathrm{v}}=\langle-1,4,5\rangle \\ \overrightarrow{\mathrm{w}}=\langle 1,-4,5\rangle \\ \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}}=[?]\end{array} \]
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the dot product of the vectors \(\overrightarrow{\mathrm{v}} = \langle-1, 4, 5\rangle\) and \(\overrightarrow{\mathrm{w}} = \langle 1, -4, 5\rangle\), we use the formula for the dot product: \[ \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}} = v_1 w_1 + v_2 w_2 + v_3 w_3 \] Substituting the components of the vectors: \[ \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}} = (-1)(1) + (4)(-4) + (5)(5) \] Calculating each term: \(-1 \cdot 1 = -1\) \(4 \cdot -4 = -16\) \(5 \cdot 5 = 25\) Now, add these results together: \[ -1 - 16 + 25 = 8 \] Thus, the dot product \(\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}} = 8\).