Use the information given about the angle \( \theta, \cos \theta=-\frac{\sqrt{3}}{3}, \frac{\pi}{2}<\theta<\pi \), to find the exact values of the foliowing. \( \begin{array}{llll}\text { (a) } \sin (2 \theta) & \text { (b) } \cos (2 \theta) & \text { (c) } \sin \frac{\theta}{2} & \text { (d) } \cos \frac{\theta}{2} \\ \text { (a) } \sin (2 \theta)=-\frac{2 \sqrt{2}}{3} & \text { (Type an exact answer, using radicals as needed.) } \\ \text { (b) } \cos (2 \theta)=-\frac{1}{3} \text { (Type an exact answer, using radicals as needed.) } \\ \text { (c) } \sin \frac{\theta}{2}=\square \text { (Type an exact answer, using radicals as needed.) }\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find \( \sin \frac{\theta}{2} \) and \( \cos \frac{\theta}{2} \), we start from the given cosine value \( \cos \theta = -\frac{\sqrt{3}}{3} \). Since \( \frac{\pi}{2} < \theta < \pi \), \( \theta \) is in the second quadrant, which means \( \sin \theta \) is positive. Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] we can solve for \( \sin \theta \): \[ \sin^2 \theta + \left(-\frac{\sqrt{3}}{3}\right)^2 = 1 \\ \sin^2 \theta + \frac{1}{3} = 1 \\ \sin^2 \theta = 1 - \frac{1}{3} = \frac{2}{3} \\ \sin \theta = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3} \] Now we can find the half-angle values. Using half-angle formulas: \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} \\ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \left(-\frac{\sqrt{3}}{3}\right)}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3 + \sqrt{3}}{3}}{2}} = \sqrt{\frac{3 + \sqrt{3}}{6}} \] Next, we also need \( \cos \frac{\theta}{2} \): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} \\ \cos \frac{\theta}{2} = \sqrt{\frac{1 - \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3 - \sqrt{3}}{3}}{2}} = \sqrt{\frac{3 - \sqrt{3}}{6}} \] So, putting it all together: \[ \text{(c) } \sin \frac{\theta}{2} = \sqrt{\frac{3 + \sqrt{3}}{6}} \] \[ \text{(d) } \cos \frac{\theta}{2} = \sqrt{\frac{3 - \sqrt{3}}{6}} \]