Question
upstudy study bank question image url

Follow the proper order of operations to evaluate the following. \( \frac{-7\left(5^{2}-20\right)}{9-14} \)

Ask by Page Love. in the United States
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The result of the expression is 7.

Solution

Certainly! Let's evaluate the expression step by step using the proper order of operations (PEMDAS/BODMAS): \[ \frac{-7\left(5^{2}-20\right)}{9-14} \] ### Step 1: Parentheses First, evaluate the expressions inside the parentheses. 1. **Exponentiation inside the numerator:** \[ 5^{2} = 25 \] 2. **Subtract within the numerator's parentheses:** \[ 25 - 20 = 5 \] 3. **Subtract within the denominator:** \[ 9 - 14 = -5 \] Now, the expression simplifies to: \[ \frac{-7 \times 5}{-5} \] ### Step 2: Multiplication Multiply \(-7\) by \(5\): \[ -7 \times 5 = -35 \] Now, the expression is: \[ \frac{-35}{-5} \] ### Step 3: Division Divide \(-35\) by \(-5\): \[ \frac{-35}{-5} = 7 \] ### Final Answer \[ 7 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

First, let's simplify the expression step-by-step using the order of operations (PEMDAS/BODMAS: Parentheses, Exponents, Multiplication and Division, Addition and Subtraction). Start with the expression inside the parentheses: \(5^2 - 20\), which equals \(25 - 20 = 5\). Next, substitute this back into the equation: \(-7(5)\) gives \(-35\). Now, focus on the denominator: \(9 - 14 = -5\). So the main expression now looks like \(\frac{-35}{-5}\). Finally, dividing \(-35\) by \(-5\) gives you \(7\). Thus, the final result is \(7\).

Related Questions

Latest Pre Algebra Questions

Exercise 1.7 1. Expand: a) \( \sum_{k=1}^{5} k^{2} \) b) \( \sum_{k=1}^{6} \frac{k}{k+2} \) c) \( \sum_{r=2}^{5} 2^{r} \) d) \( \sum_{r=2}^{8}(-1)^{r} \) e) \( \sum_{k=3}^{9}(-3)(5)^{k} \) f) \( \sum_{k=0}^{12}(7-2 k) \) 2. Write in sigma notation: a) \( 1+2+3+4+5+6 \) b) \( 1+4+9+16+25+36+49 \) (c) \( 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots+\frac{1}{10} \) d) \( \frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}+\ldots+\frac{20}{21} \) e) \( 1.2+2.3+3.4+\ldots+ \) to \( n \) terms. f) \( 3+3+3+\ldots+ \) to \( n \) terms. g) \( a+a+a+\ldots+ \) to \( n \) terms. h) \( p^{2}+3 p^{4}+5 p^{6}+\ldots+ \) to \( n \) terms. i) \( x^{n}+x^{n-1} y+x^{n-2} y^{2}+x^{n-3} y^{3}+\ldots+x y^{n-1}+y^{n} \) j) \( x+2 x^{2}+6 x^{3}+24 x^{4}+120 x^{5}+\ldots \) to \( n \) terms. 3. Determine \( n \) in each series: a) \( \sum_{r=1}^{n}\left(\frac{5 r}{4}\right)=150 \) b) \( \sum_{r=3}^{n}(6 r-1)=2225 \) c) \( \sum_{r=1}^{n}(22-3 r)=44 \) d) \( \sum_{k=1}^{n} 3(2)^{k-1}=381 \) e) \( \sum_{k=1}^{n} \frac{1}{5}(3)^{k-1}=24 \frac{1}{5} \) f) \( \sum_{k=1}^{n}(-8)\left(\frac{1}{2}\right)^{k-1}=-15 \frac{3}{4} \) g) \( \sum_{k=1}^{n} 8(1)^{k-1}=800 \) 4. Evaluate: a) \( \sum_{r=1}^{13}(3+2 r) \) b) \( \sum_{r=5}^{12}(2 r-5) \) c) \( \sum_{n=1}^{60} n x^{2} \) d) \( \sum_{r=0}^{13} 6\left(-\frac{1}{3}\right)^{r-1} 4,5 \) e) \( \sum_{x=1}^{5} \frac{1}{5}(-5)^{x-1} \) 5. a) What is the greatest number of terms for which \( \sum_{r=1}^{n}(r+1)<54 \) ? b) What is the least number of terms for which \( \sum_{r=1}^{n}(2 r-10)>22 \) ? 12 6. The sequence of triangular numbers is given by \( T_{1}=1 \) and \( T_{k+1}=T_{k}+(k+1) \)
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy