Pregunta
Follow the proper order of operations to evaluate the following. \( \frac{-7\left(5^{2}-20\right)}{9-14} \)
Ask by Page Love. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The result of the expression is 7.
Solución
Certainly! Let's evaluate the expression step by step using the proper order of operations (PEMDAS/BODMAS):
\[
\frac{-7\left(5^{2}-20\right)}{9-14}
\]
### Step 1: Parentheses
First, evaluate the expressions inside the parentheses.
1. **Exponentiation inside the numerator:**
\[
5^{2} = 25
\]
2. **Subtract within the numerator's parentheses:**
\[
25 - 20 = 5
\]
3. **Subtract within the denominator:**
\[
9 - 14 = -5
\]
Now, the expression simplifies to:
\[
\frac{-7 \times 5}{-5}
\]
### Step 2: Multiplication
Multiply \(-7\) by \(5\):
\[
-7 \times 5 = -35
\]
Now, the expression is:
\[
\frac{-35}{-5}
\]
### Step 3: Division
Divide \(-35\) by \(-5\):
\[
\frac{-35}{-5} = 7
\]
### Final Answer
\[
7
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
First, let's simplify the expression step-by-step using the order of operations (PEMDAS/BODMAS: Parentheses, Exponents, Multiplication and Division, Addition and Subtraction). Start with the expression inside the parentheses: \(5^2 - 20\), which equals \(25 - 20 = 5\). Next, substitute this back into the equation: \(-7(5)\) gives \(-35\). Now, focus on the denominator: \(9 - 14 = -5\). So the main expression now looks like \(\frac{-35}{-5}\). Finally, dividing \(-35\) by \(-5\) gives you \(7\). Thus, the final result is \(7\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium