Question
upstudy study bank question image url

5) \( P(x)=x^{3}-2 x^{2}-2 x+12, \quad a=-2 \)

Ask by Zimmerman Pena. in Thailand
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( P(-2) = 0 \)

Solution

การประเมินค่า \( P(a) \) เมื่อ \( P(x) = x^{3} - 2x^{2} - 2x + 12 \) และ \( a = -2 \) เราต้องการหา \( P(-2) \) \[ P(-2) = (-2)^{3} - 2(-2)^{2} - 2(-2) + 12 \] คำนวณทีละขั้นตอน: 1. คำนวณ \( (-2)^{3} \): \[ (-2)^{3} = -8 \] 2. คำนวณ \( -2(-2)^{2} \): \[ (-2)^{2} = 4 \\ -2 \times 4 = -8 \] 3. คำนวณ \( -2(-2) \): \[ -2 \times (-2) = 4 \] 4. รวมค่าทั้งหมด: \[ P(-2) = -8 - 8 + 4 + 12 \] 5. บวกและลบค่าตามลำดับ: \[ -8 - 8 = -16 \\ 4 + 12 = 16 \\ -16 + 16 = 0 \] ดังนั้น, \[ P(-2) = 0 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the value of \( P(-2) \) for the polynomial \( P(x) = x^3 - 2x^2 - 2x + 12 \), simply substitute \( x = -2 \) into the polynomial: \[ P(-2) = (-2)^3 - 2(-2)^2 - 2(-2) + 12 \] Calculating each term gives: \[ P(-2) = -8 - 2(4) + 4 + 12 = -8 - 8 + 4 + 12 = 0 \] So, \( P(-2) = 0 \). This means that \( x + 2 \) is a factor of the polynomial \( P(x) \). Now for the second part, the polynomial can be factored further using synthetic division or polynomial long division to find the other factors.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy