Find the missing measure to the nearest tenth. Use 3.14 for \( \pi \). 5. rectangular pyramid: base length \( =15 \mathrm{~m} \) base width \( = \) ? height \( =21 \mathrm{~m} \) volume \( =2415 \mathrm{~m}^{3} \) 6. triangular pyramid: base width \( =8 \mathrm{~cm} \) base height \( =18 \mathrm{~cm} \) height \( = \) ? volume \( =624 \mathrm{~cm}^{3} \) \( \qquad \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the missing measures for the rectangular pyramid, we start with the formula for the volume of a rectangular pyramid: \[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \] The base area (A) is calculated as: \[ A = \text{base length} \times \text{base width} = 15 \times b \] Setting this equal to the given volume: \[ 2415 = \frac{1}{3} \times (15 \times b) \times 21 \] Solving for b gives: \[ b = \frac{2415 \times 3}{15 \times 21} \] \[ b \approx 23.0 \mathrm{~m} \] For the triangular pyramid, we use the formula for volume as well: \[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \] Here, the base area is: \[ A = \frac{1}{2} \times \text{base width} \times \text{base height} = \frac{1}{2} \times 8 \times 18 \] \[ A = 72 \mathrm{~cm}^2 \] Using the volume formula: \[ 624 = \frac{1}{3} \times 72 \times h \] Solving for h provides: \[ h = \frac{624 \times 3}{72} \] \[ h \approx 26.0 \mathrm{~cm} \]