Question
upstudy study bank question image url

A soccer ball is klcked and can be modeled by \( y=-16 x^{2}+36 x \). When will the ball be at or above 20 feet? \( \square] \)

Ask by Rodriquez French. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The soccer ball will be at or above 20 feet when \(1 \leq x \leq 1.25\).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

To determine when the soccer ball will be at or above 20 feet, we need to solve the equation \( -16x^2 + 36x \geq 20 \). Rearranging gives us \( -16x^2 + 36x - 20 \geq 0 \). By factoring or using the quadratic formula, we can find the values of \( x \) (time in seconds) when the ball reaches 20 feet. When solving, you'll find that the quadratic is above 20 feet between the two points where it intersects the line \( y = 20 \). These points can be determined and represented as time intervals. It’s exciting to see the nature of parabolic motion when analyzing sports like soccer. For real-world applications, this type of modeling is crucial in sports analytics. Coaches use such equations to assess player performance, optimize kicks, or even predict the trajectory of a ball during training sessions. Understanding these dynamics helps players refine their techniques and improve their game strategy, transforming raw data into critical insights for success on the field.

Related Questions

PHIẾU: PHÉP CỘNG, TRỪ PHÂN SỐ HỌ VÀ TÊN:.............................LỚP 8A4 Bài 1. Thực hiện phép tính: a) \( \frac{x-5}{5}+\frac{1-x}{5} \) b) \( \frac{x-y}{8}+\frac{2 y}{8} \) c) \( \frac{x^{2}+1}{x-2}-\frac{1-2 x}{x-2} \) d) \( \frac{4 x+1}{3}-\frac{x-2}{3} \) e) \( \frac{4 x-1}{3 x^{2} y}-\frac{7 x-1}{3 x^{2} y} \) f) \( \frac{3 x+2 y}{x-y}-\frac{2 x+3 y}{x-y} \) d) \( \frac{5 x y^{2}-x^{2} y}{3 x y}-\frac{4 x y^{2}+x^{2} y}{3 x y} \) e) \( \frac{x+1}{a-b}+\frac{x-1}{a-b}-\frac{x+3}{a-b} \) f) \( \frac{5 x y-4 y}{2 x^{2} y^{3}}+\frac{3 x y+4 y}{2 x^{2} y^{3}} \) h) \( \frac{x^{2}+4}{x-2}+\frac{4 x}{2-x} \) i) \( \frac{2 x^{2}-x y}{x-y}+\frac{x y+y^{2}}{y-x}-\frac{2 y^{2}-x^{2}}{x-y} \) Bài 2: Thực hiện phép tính: a) \( \frac{2 x+4}{10}+\frac{2-x}{15} \) b) \( \frac{x^{2}}{x^{2}+3 x}+\frac{3}{x+3}+\frac{3}{x} \) c) \( \frac{2}{x+y}-\frac{1}{y-x}+\frac{-3 x}{x^{2}-y^{2}} \) d) \( \frac{4}{x+2}+\frac{2}{x-2}+\frac{5 x-6}{4-x^{2}} \); e) \( \frac{1-3 x}{2 x}+\frac{3 x-2}{2 x-1}+\frac{3 x-2}{2 x-4 x^{2}} \); f) \( \frac{x^{2}+2}{x^{3}-1}+\frac{2}{x^{2}+x+1}+\frac{1}{1-x} \) Bài 3. Làm tính trừ các phân thức sau: a) \( \frac{4 x+1}{3}-\frac{x-2}{3} \) b) \( \frac{4 x-1}{3 x^{2} y}-\frac{7 x-1}{3 x^{2} y} \) c) \( \frac{3 x+2 y}{x-y}-\frac{2 x+3 y}{x-y} \) Bài 4. Làm các phép tính a) \( \frac{x y-1}{2 x-y}-\frac{1-2 x^{2}}{y-2 x} \) b) \( \frac{3 x y^{2}+x^{2} y}{x^{2} y-x y^{2}}-\frac{3 x^{2} y+x y^{2}}{x y(x-y)} \) c) \( \frac{x+9}{x^{2}-9}-\frac{3}{x^{2}+3 x} \) Bài 5. Thực hiện phép tính a) \( \frac{5 x^{2}}{6 x-6 y}-\frac{2 x^{2}}{3 y-3 x} \) b) \( \frac{y}{x y-5 x^{2}}-\frac{25 x-15 y}{25 x^{2}-y^{2}} \) c) \( \frac{1}{2 x-3}-\frac{2}{2 x+3}-\frac{6}{4 x^{2}-9} \) Bài 6. Rút gọn rồi tính giá trị của biểu thức a) \( \frac{x+1}{x-1}-\frac{4 x}{x^{2}-1} \) với \( x=-2 \) b) \( \frac{1}{x y-x^{2}}-\frac{1}{y^{2}-x y} \) với \( x=-5 ; y=\frac{-1}{5} \) Bài 7. Chứng minh biểu thức sau không phụ thuộc vào x : \[ A=\frac{11 x}{2 x-3}-\frac{x-18}{3-2 x} \quad B=\frac{1}{x+1}-\frac{2 x}{x-1}+\frac{x+3}{x^{2}-1} \] Bài 8. Chứng minh biểu thức sau không phụ thuộc vào \( \mathrm{x}, \mathrm{y} \) : \[ D=\frac{2 x+1}{x-2 y}-\frac{5 y+2}{x-2 y}-\frac{y+1}{2 y-x} \quad K=\frac{x+y}{x}-\frac{x}{x-y}+\frac{y^{2}}{x^{2}-x y} \]
Algebra Vietnam Jan 24, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy