Find the angle \( \theta \) between the vectors. \[ \begin{array}{l}\mathbf{u}=6 \mathbf{i}+7 \mathbf{j}+\mathbf{k} \\ \mathbf{v}=7 \mathbf{i}-6 \mathbf{j}\end{array} \] \( \theta=\square \) radians
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To find the angle \( \theta \) between the vectors \(\mathbf{u}\) and \(\mathbf{v}\), we can use the dot product formula: \[ \mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta \] First, let's compute the dot product \(\mathbf{u} \cdot \mathbf{v}\): \[ \mathbf{u} \cdot \mathbf{v} = (6)(7) + (7)(-6) + (1)(0) = 42 - 42 + 0 = 0 \] Next, we find the magnitudes of \(\mathbf{u}\) and \(\mathbf{v}\): \[ |\mathbf{u}| = \sqrt{6^2 + 7^2 + 1^2} = \sqrt{36 + 49 + 1} = \sqrt{86} \] \[ |\mathbf{v}| = \sqrt{7^2 + (-6)^2} = \sqrt{49 + 36} = \sqrt{85} \] Now, using the dot product result: \[ 0 = |\mathbf{u}| |\mathbf{v}| \cos \theta \] Since the dot product is 0, this implies: \[ \cos \theta = 0 \] The angle \( \theta \) where \(\cos \theta = 0\) is: \[ \theta = \frac{\pi}{2} \text{ radians} \] Thus, the angle \( \theta \) between the vectors is: \[ \theta = \frac{\pi}{2} \text{ radians} \]