Question
upstudy study bank question image url

(1) \( \lim _{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{x}=\lim _{x \rightarrow 0^{-}} \)

Ask by Hardy Hampton. in Israel
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The limit \( \lim_{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{x} \) is positive infinity.

Solution

Calculate or simplify the expression \( \lim_{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{x} \). Evaluate the limit by following steps: - step0: Evaluate using L'Hopital's rule: \(\lim _{x\rightarrow 0^{+}}\left(\frac{\sin\left(\sqrt{x}\right)}{x}\right)\) - step1: Use the L'Hopital's rule: \(\lim _{x\rightarrow 0^{+}}\left(\frac{\frac{d}{dx}\left(\sin\left(\sqrt{x}\right)\right)}{\frac{d}{dx}\left(x\right)}\right)\) - step2: Find the derivative: \(\lim _{x\rightarrow 0^{+}}\left(\frac{\frac{\cos\left(\sqrt{x}\right)}{2\sqrt{x}}}{1}\right)\) - step3: Simplify the expression: \(\lim _{x\rightarrow 0^{+}}\left(\frac{\cos\left(\sqrt{x}\right)}{2\sqrt{x}}\right)\) - step4: Rewrite the expression: \(\frac{\lim _{x\rightarrow 0^{+}}\left(\cos\left(\sqrt{x}\right)\right)}{\lim _{x\rightarrow 0^{+}}\left(2\sqrt{x}\right)}\) - step5: Calculate: \(\frac{1}{\lim _{x\rightarrow 0^{+}}\left(2\sqrt{x}\right)}\) - step6: Calculate: \(+\infty\) When \( x \) approaches 0 from the right, the limit of \( \frac{\sin \sqrt{x}}{x} \) is positive infinity.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To tackle the limit \( \lim _{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{x} \), we start with the fact that as \( x \) approaches \( 0 \) from the positive side, \( \sqrt{x} \) also approaches \( 0 \). Using the small angle approximation, \( \sin y \approx y \) when \( y \) is near \( 0 \), we can set \( y = \sqrt{x} \). Thus, we rewrite the limit: \[ \lim _{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{x} = \lim _{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{\sqrt{x}} \cdot \frac{\sqrt{x}}{x} = \lim _{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} \] Here, the limit \( \lim _{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{\sqrt{x}} = 1 \). Therefore, we have: \[ \lim _{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{x} = \lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{x}} = \infty \] Thus, \( \lim _{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{x} = \infty \) and similarly, since the left-hand limit is not applicable (as \( x \) cannot approach \( 0 \) from the negative side), we write that \( \lim _{x \rightarrow 0^{-}} \frac{\sin \sqrt{x}}{x} \) does not exist.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy