Question
upstudy study bank question image url

1) \( \frac{27^{3-2 x} \cdot 9^{x-1}}{81^{2 x}} \) 2) \( \frac{6 \cdot 5^{x+1}-2 \cdot 5^{x-2}}{5^{x+3}} \) 3) \( \frac{2^{2009}-2^{2012}}{2^{2010}} \)

Ask by Morgan Lowe. in South Africa
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( 3^{7 - 12x} \) 2. \( \frac{748}{3125} \) 3. \( -\frac{7}{2} \)

Solution

Let's simplify each of the given expressions step by step. --- ### 1) Simplify \( \frac{27^{3-2x} \cdot 9^{x-1}}{81^{2x}} \) **Step 1:** Express all bases as powers of 3. - \( 27 = 3^3 \) - \( 9 = 3^2 \) - \( 81 = 3^4 \) **Step 2:** Rewrite the expression using these bases. \[ \frac{(3^3)^{3-2x} \cdot (3^2)^{x-1}}{(3^4)^{2x}} = \frac{3^{9 - 6x} \cdot 3^{2x - 2}}{3^{8x}} \] **Step 3:** Combine the exponents in the numerator. \[ 3^{9 - 6x + 2x - 2} = 3^{7 - 4x} \] **Step 4:** Subtract the exponent in the denominator. \[ \frac{3^{7 - 4x}}{3^{8x}} = 3^{7 - 12x} \] **Final Answer:** \[ 3^{7 - 12x} \] --- ### 2) Simplify \( \frac{6 \cdot 5^{x+1} - 2 \cdot 5^{x-2}}{5^{x+3}} \) **Step 1:** Break down each term in the numerator. \[ 6 \cdot 5^{x+1} = 6 \cdot 5^x \cdot 5 = 30 \cdot 5^x \] \[ 2 \cdot 5^{x-2} = 2 \cdot 5^x \cdot 5^{-2} = \frac{2 \cdot 5^x}{25} \] **Step 2:** Rewrite the entire expression. \[ \frac{30 \cdot 5^x - \frac{2 \cdot 5^x}{25}}{5^{x+3}} \] **Step 3:** Factor out \( 5^x \) from the numerator. \[ 5^x \left(30 - \frac{2}{25}\right) = 5^x \left(\frac{750}{25} - \frac{2}{25}\right) = 5^x \cdot \frac{748}{25} \] **Step 4:** Simplify by dividing by \( 5^{x+3} \). \[ \frac{5^x \cdot \frac{748}{25}}{5^x \cdot 5^3} = \frac{748}{25 \cdot 125} = \frac{748}{3125} \] **Final Answer:** \[ \frac{748}{3125} \] --- ### 3) Simplify \( \frac{2^{2009} - 2^{2012}}{2^{2010}} \) **Step 1:** Factor out \( 2^{2009} \) from the numerator. \[ 2^{2009}(1 - 2^3) = 2^{2009}(1 - 8) = 2^{2009}(-7) = -7 \cdot 2^{2009} \] **Step 2:** Divide by \( 2^{2010} \). \[ \frac{-7 \cdot 2^{2009}}{2^{2010}} = -7 \cdot 2^{-1} = -\frac{7}{2} \] **Final Answer:** \[ -\frac{7}{2} \] ---

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To simplify these expressions, we can use the properties of exponents and the fact that we can represent different bases as powers of the same base where applicable. 1) \( \frac{27^{3-2 x} \cdot 9^{x-1}}{81^{2 x}} \) First, express 27, 9, and 81 in terms of base 3: \( 27 = 3^3 \), \( 9 = 3^2 \), \( 81 = 3^4 \). So we can rewrite the expression as: \[ \frac{(3^3)^{3-2x} \cdot (3^2)^{x-1}}{(3^4)^{2x}} = \frac{3^{9-6x} \cdot 3^{2x-2}}{3^{8x}} = 3^{(9-6x + 2x - 2 - 8x)} = 3^{-5x + 7}. \] 2) \( \frac{6 \cdot 5^{x+1}-2 \cdot 5^{x-2}}{5^{x+3}} \) Factor out \( 5^{x-2} \) from the numerator: \[ 6 \cdot 5^{x+1} - 2 \cdot 5^{x-2} = 5^{x-2} \cdot (6 \cdot 5^3 - 2) = 5^{x-2} \cdot (6 \cdot 125 - 2) = 5^{x-2} \cdot 748. \] Thus, \[ \frac{5^{x-2} \cdot 748}{5^{x+3}} = 748 \cdot \frac{1}{5^5} = \frac{748}{5^5}. \] 3) \( \frac{2^{2009}-2^{2012}}{2^{2010}} \) Factor \( 2^{2009} \) out of the numerator: \[ \frac{2^{2009} (1 - 2^3)}{2^{2010}} = \frac{2^{2009} \cdot (-7)}{2^{2010}} = -7 \frac{2^{2009}}{2^{2010}} = -\frac{7}{2}. \] So the simplified results are: 1) \( 3^{-5x + 7} \) 2) \( \frac{748}{5^5} \) 3) \( -\frac{7}{2} \)

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy