Question
upstudy study bank question image url

\begin{tabular}{l|l}\( \begin{array}{l}\text { Rationalize the } \\ \text { denominator. }\end{array} \) & \( \sqrt{\frac{17}{3}}=\square \) \\ \( \begin{array}{l}\frac{17}{3}\end{array} \) & \( \begin{array}{l}\text { (Simplify your answer. Type an exact answer, using radicals as needed.) }\end{array} \) \\ \end{tabular}

Ask by Elliott Little. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \sqrt{\frac{17}{3}} = \frac{\sqrt{51}}{3} \]

Solution

To rationalize the denominator of the expression \(\sqrt{\frac{17}{3}}\), follow these steps: 1. **Express the Square Root as a Fraction:** \[ \sqrt{\frac{17}{3}} = \frac{\sqrt{17}}{\sqrt{3}} \] 2. **Rationalize the Denominator:** Multiply both the numerator and the denominator by \(\sqrt{3}\) to eliminate the square root from the denominator: \[ \frac{\sqrt{17}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{17} \times \sqrt{3}}{3} = \frac{\sqrt{51}}{3} \] 3. **Simplify the Expression:** The expression \(\frac{\sqrt{51}}{3}\) is the rationalized and simplified form of the original expression. **Final Answer:** \[ \sqrt{\frac{17}{3}} = \frac{\sqrt{51}}{3} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To rationalize the denominator for the expression \( \sqrt{\frac{17}{3}} \), you can rewrite it as \( \frac{\sqrt{17}}{\sqrt{3}} \). To eliminate the square root in the denominator, multiply the numerator and denominator by \( \sqrt{3} \). This gives you: \[ \frac{\sqrt{17} \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}} = \frac{\sqrt{51}}{3} \] So, the rationalized form is \( \frac{\sqrt{51}}{3} \). In practical terms, rationalizing the denominator is not just about eliminating square roots; it often makes calculations easier, especially in fractions. For example, when adding or subtracting fractions, having a rational denominator clears up the arithmetic, making it simpler to manage the operations. It’s like tidying up your workspace before diving into a project—everything just flows better!

Latest Pre Algebra Questions

Write down the next two terms for each geometric sequence. a \( 2 ; 4 ; 8 ; 16 ; \ldots \) b \( 5 ; 15 ; 45 ; \ldots \) c \( 3 ; 6 ; 12 ; 24 ; \ldots \) d \( 18 ; 6 ; 2 ; \ldots \) e \( 20 ; 10 ; 5 ; \ldots \) f \( 4 ;-12 ; 36 ; \ldots \) g \( 7 ;-14 ; 28 ; \ldots \) h \( 8 ; 4 ; 2 ; \ldots \) i \( \frac{1}{9} ; \frac{1}{3} ; 1 ; \ldots \) j \( 500(1,25) ; 500(1,25)^{2} ; 500(1,25)^{3} ; \ldots \) k \( 1000(1,8) ; 1000(1,8)^{2} ; 1000(1,8)^{3} ; \ldots \) i \( 6000(1,1) ; 6000(1,1)^{2} ; 6000(1,1)^{3} ; \ldots \) m \( 400\left(1+\frac{0,09}{12}\right) ; 400\left(1+\frac{0,09}{12}\right)^{2} ; 400\left(1+\frac{0,09}{12}\right)^{3} ; \ldots \) n \( 300\left(1+\frac{0,1125}{4}\right) ; 300\left(1+\frac{0,1125}{4}\right)^{2} ; 300\left(1+\frac{0,1125}{4}\right)^{3} ; \ldots \) o \( x\left(1+\frac{0,092}{2}\right) ; x\left(1+\frac{0,092}{2}\right)^{2} ; x\left(1+\frac{0,092}{2}\right)^{3} ; \ldots \) 2 Find the first three terms for each geometric sequence. a \( \mathrm{T}_{1}=2 \) and \( r=3 \) b \( \mathrm{T}_{1}=4 \) and \( r=\frac{1}{2} \) c \( \mathrm{T}_{1}=12 \) and \( r=\frac{-1}{3} \) d \( T_{1}=500 \) and \( r=1,1 \) e. \( \mathrm{T}_{1}=8000 \) and \( r=\left(1+\frac{0,09}{4}\right) \) f \( T_{1}=3 \) and \( T_{6}=96 \) g \( \quad T_{1}=7 \) and \( T_{5}=\frac{7}{81} \) h \( T_{2}=6 \) and \( T_{7}=192 \) \( T_{3}=18 \) and \( T_{5}=162 \) -d \( T_{3}=16 \) and \( T_{7}=256 \) k \( T_{2}=10 \) and \( T_{5}=80 \) I \( T_{2}=3 \) and \( T_{6}=\frac{1}{27} \) Determine: a which term is equal to 1280 in the sequence \( 5 ; 10 ; 20 ; \ldots \) b which term is equal to 1536 in the sequence \( 3 ; 6 ; 12 ; \ldots \) c which term is equal to 6561 in the sequence \( 3 ; 9 ; 27 ; \ldots \) d which term is equal to \( \frac{5}{16384} \) in the sequence \( \frac{5}{4} ; \frac{5}{8} ; \frac{5}{16} ; \ldots \) e which term is equal to \( \frac{1}{8192} \) in the sequence \( 16 ; 8 ; 4 ; \ldots \)
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy