Question
upstudy study bank question image url

9) \( 15-2(3 y-2)^{\frac{1}{2}}=y-4 \)

Ask by Powell Macdonald. in Argentina
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La solución es \( y = 9 \).

Solution

Para resolver la ecuación: \[ 15 - 2\sqrt{3y - 2} = y - 4 \] **Paso 1: Aislar la raíz cuadrada** Primero, trasladamos todos los términos que no contienen la raíz cuadrada al otro lado de la ecuación: \[ 15 - (y - 4) = 2\sqrt{3y - 2} \] Simplificando: \[ 15 - y + 4 = 2\sqrt{3y - 2} \] \[ 19 - y = 2\sqrt{3y - 2} \] **Paso 2: Aislar la raíz cuadrada completamente** Dividimos ambos lados por 2: \[ \frac{19 - y}{2} = \sqrt{3y - 2} \] **Paso 3: Elevar al cuadrado ambos lados para eliminar la raíz** \[ \left( \frac{19 - y}{2} \right)^2 = 3y - 2 \] \[ \frac{(19 - y)^2}{4} = 3y - 2 \] Multiplicamos ambos lados por 4 para eliminar el denominador: \[ (19 - y)^2 = 12y - 8 \] \[ 361 - 38y + y^2 = 12y - 8 \] **Paso 4: Reorganizar la ecuación cuadrática** Llevamos todos los términos al lado izquierdo: \[ y^2 - 38y - 12y + 361 + 8 = 0 \] \[ y^2 - 50y + 369 = 0 \] **Paso 5: Resolver la ecuación cuadrática usando la fórmula cuadrática** La ecuación es de la forma \( ay^2 + by + c = 0 \), donde \( a = 1 \), \( b = -50 \), y \( c = 369 \). La fórmula cuadrática es: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Sustituyendo los valores: \[ y = \frac{50 \pm \sqrt{(-50)^2 - 4 \cdot 1 \cdot 369}}{2} \] \[ y = \frac{50 \pm \sqrt{2500 - 1476}}{2} \] \[ y = \frac{50 \pm \sqrt{1024}}{2} \] \[ y = \frac{50 \pm 32}{2} \] Obtenemos dos soluciones: 1. \[ y = \frac{50 + 32}{2} = \frac{82}{2} = 41 \] 2. \[ y = \frac{50 - 32}{2} = \frac{18}{2} = 9 \] **Paso 6: Verificar las soluciones en la ecuación original** - **Para \( y = 41 \):** \[ 15 - 2\sqrt{3(41) - 2} = 15 - 2\sqrt{123 - 2} = 15 - 2\sqrt{121} = 15 - 22 = -7 \] \[ y - 4 = 41 - 4 = 37 \] \[ -7 \neq 37 \quad \text{(No es válida)} \] - **Para \( y = 9 \):** \[ 15 - 2\sqrt{3(9) - 2} = 15 - 2\sqrt{27 - 2} = 15 - 2\sqrt{25} = 15 - 10 = 5 \] \[ y - 4 = 9 - 4 = 5 \] \[ 5 = 5 \quad \text{(Válida)} \] **Conclusión:** La única solución válida para la ecuación es: \[ y = 9 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the equation \( 15-2(3 y-2)^{\frac{1}{2}}=y-4 \), let's first isolate the square root. We can rearrange it: 1. Add \( 2(3y - 2)^{\frac{1}{2}} \) to both sides: \( 15 = y - 4 + 2(3y - 2)^{\frac{1}{2}} \) 2. Simplifying, we have: \( y + 1 = 2(3y - 2)^{\frac{1}{2}} \) 3. Divide by 2: \( (y + 1)/2 = (3y - 2)^{\frac{1}{2}} \) 4. Square both sides to eliminate the square root: \( \left( \frac{y + 1}{2} \right)^2 = 3y - 2 \) 5. This gives us: \( \frac{(y + 1)^2}{4} = 3y - 2 \) 6. Multiplying through by 4 to eliminate the fraction: \( (y + 1)^2 = 12y - 8 \) 7. Expanding the left side: \( y^2 + 2y + 1 = 12y - 8 \) 8. Rearranging everything to one side gives: \( y^2 - 10y + 9 = 0 \) Now we can factor this quadratic: 9. Factoring yields: \( (y - 1)(y - 9) = 0 \) 10. Setting each factor to zero gives us: \( y = 1 \) or \( y = 9 \) Lastly, we should check these solutions in the original equation to ensure they don't produce extraneous solutions. When substituting \( y = 1 \) and \( y = 9 \) back into the original equation, both validate, confirming that the solutions are correct: \( y = 1 \) and \( y = 9 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy