Question
upstudy study bank question image url

If \( f(x) \) is an exponential function of the form of \( y=a b^{x} \) where \( f(-1.5)=12 \) and \( f(2)=79 \), then find the value of \( f(-0.5) \), to the nearest hundredth.

Ask by Byrd Conner. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( f(-0.5) \approx 20.56 \)

Solution

Given that \( f(x) \) is an exponential function of the form \( y = ab^x \), where \( f(-1.5) = 12 \) and \( f(2) = 79 \), we need to find the value of \( f(-0.5) \) to the nearest hundredth. To find the value of \( f(-0.5) \), we first need to determine the values of \( a \) and \( b \) using the given information. We have two equations: 1. \( f(-1.5) = 12 \) 2. \( f(2) = 79 \) Substitute the values of \( x \) into the exponential function: 1. \( 12 = ab^{-1.5} \) 2. \( 79 = ab^2 \) Now, we can solve these equations to find the values of \( a \) and \( b \). Let's solve the system of equations to find the values of \( a \) and \( b \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}12=ab^{-1.5}\\79=ab^{2}\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}12=ab^{-\frac{3}{2}}\\79=ab^{2}\end{array}\right.\) - step2: Solve the equation: \(\left\{ \begin{array}{l}a=12b^{\frac{3}{2}}\\79=ab^{2}\end{array}\right.\) - step3: Substitute the value of \(a:\) \(79=12b^{\frac{3}{2}}\times b^{2}\) - step4: Multiply the terms: \(79=12b^{\frac{7}{2}}\) - step5: Swap the sides: \(12b^{\frac{7}{2}}=79\) - step6: Divide both sides: \(\frac{12b^{\frac{7}{2}}}{12}=\frac{79}{12}\) - step7: Divide the numbers: \(b^{\frac{7}{2}}=\frac{79}{12}\) - step8: Raise both sides to the \(\frac{2}{7}\)-th power\(:\) \(\left(b^{\frac{7}{2}}\right)^{\frac{2}{7}}=\left(\frac{79}{12}\right)^{\frac{2}{7}}\) - step9: Evaluate the power: \(b=\frac{\sqrt[7]{6241\times 12^{5}}}{12}\) - step10: Substitute the value of \(b:\) \(a=12\left(\frac{\sqrt[7]{6241\times 12^{5}}}{12}\right)^{\frac{3}{2}}\) - step11: Simplify: \(a=\frac{\sqrt[14]{2187\left(6241\times 12^{5}\right)^{3}}}{6}\) - step12: Calculate: \(a=\frac{\sqrt[14]{2187\times 6241^{3}\times 12^{15}}}{6}\) - step13: Calculate: \(\left\{ \begin{array}{l}a=\frac{\sqrt[14]{2187\times 6241^{3}\times 12^{15}}}{6}\\b=\frac{\sqrt[7]{6241\times 12^{5}}}{12}\end{array}\right.\) - step14: Check the solution: \(\left\{ \begin{array}{l}a=\frac{\sqrt[14]{2187\times 6241^{3}\times 12^{15}}}{6}\\b=\frac{\sqrt[7]{6241\times 12^{5}}}{12}\end{array}\right.\) - step15: Rewrite: \(\left(a,b\right) = \left(\frac{\sqrt[14]{2187\times 6241^{3}\times 12^{15}}}{6},\frac{\sqrt[7]{6241\times 12^{5}}}{12}\right)\) The solution to the system of equations is \( a = \frac{\sqrt[14]{2187 \times 6241^3 \times 12^{15}}}{6} \) and \( b = \frac{\sqrt[7]{6241 \times 12^5}}{12} \). Now, we can substitute these values back into the exponential function to find \( f(-0.5) \). Substitute \( a \) and \( b \) into the exponential function: \( f(-0.5) = \frac{\sqrt[14]{2187 \times 6241^3 \times 12^{15}}}{6} \times \left(\frac{\sqrt[7]{6241 \times 12^5}}{12}\right)^{-0.5} \) Let's calculate the value of \( f(-0.5) \) to the nearest hundredth. Calculate the value by following steps: - step0: Calculate: \(\frac{\sqrt[14]{2187\times 6241^{3}\times 12^{15}}}{6}\left(\frac{\sqrt[7]{6241\times 12^{5}}}{12}\right)^{-0.5}\) - step1: Simplify the root: \(\frac{12\sqrt[14]{26244\times 79^{6}}}{6}\left(\frac{\sqrt[7]{6241\times 12^{5}}}{12}\right)^{-0.5}\) - step2: Divide the terms: \(2\sqrt[14]{26244\times 79^{6}}\times \left(\frac{\sqrt[7]{6241\times 12^{5}}}{12}\right)^{-0.5}\) - step3: Convert the expressions: \(2\sqrt[14]{26244\times 79^{6}}\times \left(\frac{\sqrt[7]{6241\times 12^{5}}}{12}\right)^{-\frac{1}{2}}\) - step4: Multiply the terms: \(\frac{\sqrt[14]{2187\times 79^{12}\times 12^{9}}}{237}\sqrt[14]{26244\times 79^{6}}\) - step5: Multiply: \(\frac{\sqrt[14]{2187\times 79^{12}\times 12^{9}}\times \sqrt[14]{26244\times 79^{6}}}{237}\) - step6: Multiply: \(\frac{\sqrt[14]{57395628\times 79^{18}\times 12^{9}}}{237}\) The value of \( f(-0.5) \) to the nearest hundredth is approximately 20.56.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the values of the constants \( a \) and \( b \) in the exponential function \( f(x) = ab^x \), we can use the given values: 1. We have \( f(-1.5) = 12 \): \[ ab^{-1.5} = 12 \quad \text{(1)} \] 2. We have \( f(2) = 79 \): \[ ab^{2} = 79 \quad \text{(2)} \] We can divide equation (2) by equation (1) to eliminate \( a \): \[ \frac{ab^2}{ab^{-1.5}} = \frac{79}{12} \] \[ b^{2 + 1.5} = \frac{79}{12} \] \[ b^{3.5} = \frac{79}{12} \] Now we calculate \( b \): \[ b = \left( \frac{79}{12} \right)^{\frac{1}{3.5}} = \left( \frac{79}{12} \right)^{\frac{2}{7}} \quad \text{(using } \frac{1}{3.5} = \frac{2}{7} \text{)} \] Now calculate \( \frac{79}{12} \): \[ \frac{79}{12} \approx 6.5833 \] Next, we compute \( b \): \[ b \approx (6.5833)^{\frac{2}{7}} \approx 2.235 \] Next, we can substitute \( b \) back into one of the original equations to find \( a \). Let's use equation (1): \[ ab^{-1.5} = 12 \] \[ a \cdot (2.235)^{-1.5} = 12 \] \[ a = 12 \cdot (2.235)^{1.5} \] Calculating \( (2.235)^{1.5} \): \[ (2.235)^{1.5} \approx 3.348 \] Thus: \[ a \approx 12 \cdot 3.348 \approx 40.176 \] Now we have both \( a \) and \( b \): \[ a \approx 40.176 \] \[ b \approx 2.235 \] Finally, we want to find \( f(-0.5) \): \[ f(-0.5) = ab^{-0.5} \approx 40.176 \cdot (2.235)^{-0.5} \] Calculating \( (2.235)^{-0.5} \): \[ (2.235)^{-0.5} \approx 0.669 \] Now we can calculate \( f(-0.5) \): \[ f(-0.5) \approx 40.176 \cdot 0.669 \approx 26.94 \] Thus, the value of \( f(-0.5) \) to the nearest hundredth is: \[ \boxed{26.94} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy