Question

Demuestra que \( \tan(60^{\circ} - 15^{\circ}) = \frac{\sqrt{3} - \tan(15^{\circ})}{1 + \sqrt{3}\cdot\tan(15^{\circ})} \)

Ask by Coles Hampton. in Colombia
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \tan(60^{\circ} - 15^{\circ}) = \frac{\sqrt{3} - \tan(15^{\circ})}{1 + \sqrt{3} \cdot \tan(15^{\circ})} \]

Solution

Para demostrar que \[ \tan(60^{\circ} - 15^{\circ}) = \frac{\sqrt{3} - \tan(15^{\circ})}{1 + \sqrt{3} \cdot \tan(15^{\circ})}, \] utilizaremos la fórmula de la tangente de la diferencia de dos ángulos. A continuación, se detallan los pasos de la demostración: ### 1. Fórmula de la Tangente de la Diferencia La fórmula para la tangente de la diferencia entre dos ángulos \( A \) y \( B \) es: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B} \] ### 2. Aplicación de la Fórmula con \( A = 60^{\circ} \) y \( B = 15^{\circ} \) Sustituyendo \( A = 60^{\circ} \) y \( B = 15^{\circ} \) en la fórmula obtenemos: \[ \tan(60^{\circ} - 15^{\circ}) = \frac{\tan 60^{\circ} - \tan 15^{\circ}}{1 + \tan 60^{\circ} \cdot \tan 15^{\circ}} \] ### 3. Conocemos los Valores de \(\tan 60^{\circ}\) Sabemos que: \[ \tan 60^{\circ} = \sqrt{3} \] ### 4. Sustitución en la Fórmula Reemplazando \(\tan 60^{\circ}\) por \(\sqrt{3}\), la expresión queda: \[ \tan(60^{\circ} - 15^{\circ}) = \frac{\sqrt{3} - \tan 15^{\circ}}{1 + \sqrt{3} \cdot \tan 15^{\circ}} \] ### 5. Conclusión Hemos demostrado que: \[ \tan(60^{\circ} - 15^{\circ}) = \frac{\sqrt{3} - \tan 15^{\circ}}{1 + \sqrt{3} \cdot \tan 15^{\circ}} \] Esto confirma la igualdad propuesta utilizando la fórmula de la tangente de la diferencia de dos ángulos.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Para demostrar que \( \tan(60^{\circ} - 15^{\circ}) = \frac{\sqrt{3} - \tan(15^{\circ})}{1 + \sqrt{3}\cdot\tan(15^{\circ})} \), podemos utilizar la fórmula de la tangente de la diferencia de dos ángulos. La fórmula es: \[ \tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)} \] En nuestro caso, \( a = 60^{\circ} \) y \( b = 15^{\circ} \). Sabemos que: \[ \tan(60^{\circ}) = \sqrt{3} \quad \text{y} \quad \tan(15^{\circ}) = t \quad \text{(donde \( t = \tan(15^{\circ}) \))} \] Sustituyendo estos valores en la fórmula, obtenemos: \[ \tan(60^{\circ} - 15^{\circ}) = \frac{\tan(60^{\circ}) - \tan(15^{\circ})}{1 + \tan(60^{\circ})\tan(15^{\circ})} \] Esto se convierte en: \[ \tan(60^{\circ} - 15^{\circ}) = \frac{\sqrt{3} - t}{1 + \sqrt{3} t} \] Y así hemos demostrado que: \[ \tan(60^{\circ} - 15^{\circ}) = \frac{\sqrt{3} - \tan(15^{\circ})}{1 + \sqrt{3}\cdot\tan(15^{\circ})} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy