Demuestra que \( \tan(60^{\circ} - 15^{\circ}) = \frac{\sqrt{3} - \tan(15^{\circ})}{1 + \sqrt{3}\cdot\tan(15^{\circ})} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
Para demostrar que \( \tan(60^{\circ} - 15^{\circ}) = \frac{\sqrt{3} - \tan(15^{\circ})}{1 + \sqrt{3}\cdot\tan(15^{\circ})} \), podemos utilizar la fórmula de la tangente de la diferencia de dos ángulos. La fórmula es: \[ \tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)} \] En nuestro caso, \( a = 60^{\circ} \) y \( b = 15^{\circ} \). Sabemos que: \[ \tan(60^{\circ}) = \sqrt{3} \quad \text{y} \quad \tan(15^{\circ}) = t \quad \text{(donde \( t = \tan(15^{\circ}) \))} \] Sustituyendo estos valores en la fórmula, obtenemos: \[ \tan(60^{\circ} - 15^{\circ}) = \frac{\tan(60^{\circ}) - \tan(15^{\circ})}{1 + \tan(60^{\circ})\tan(15^{\circ})} \] Esto se convierte en: \[ \tan(60^{\circ} - 15^{\circ}) = \frac{\sqrt{3} - t}{1 + \sqrt{3} t} \] Y así hemos demostrado que: \[ \tan(60^{\circ} - 15^{\circ}) = \frac{\sqrt{3} - \tan(15^{\circ})}{1 + \sqrt{3}\cdot\tan(15^{\circ})} \]