Question
upstudy study bank question image url

\( \frac { 6 ^ { A + 3 } \cdot 2 ^ { N - 1 } } { 12 ^ { N + 2 } } \)

Ask by Ramirez Reid. in South Africa
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified form of the expression is \( 2^{A - N - 2} \cdot 3^{A - N + 1} \).

Solution

To simplify the expression \[ \frac { 6 ^ { A + 3 } \cdot 2 ^ { N - 1 } } { 12 ^ { N + 2 } } \] we will first express all terms in the numerator and denominator using the same base. 1. **Rewrite the bases:** - \( 6 \) can be expressed as \( 2 \cdot 3 \). - \( 12 \) can be expressed as \( 2^2 \cdot 3 \). Thus, we can rewrite the expression as: \[ \frac { (2 \cdot 3)^{A + 3} \cdot 2^{N - 1} } { (2^2 \cdot 3)^{N + 2} } \] 2. **Expand the powers:** - The numerator becomes: \[ (2^{A + 3} \cdot 3^{A + 3}) \cdot 2^{N - 1} = 2^{A + 3 + N - 1} \cdot 3^{A + 3} = 2^{A + N + 2} \cdot 3^{A + 3} \] - The denominator becomes: \[ (2^2)^{N + 2} \cdot 3^{N + 2} = 2^{2(N + 2)} \cdot 3^{N + 2} = 2^{2N + 4} \cdot 3^{N + 2} \] 3. **Combine the expression:** Now we can rewrite the entire expression as: \[ \frac { 2^{A + N + 2} \cdot 3^{A + 3} } { 2^{2N + 4} \cdot 3^{N + 2} } \] 4. **Simplify the expression:** - For the base \( 2 \): \[ 2^{A + N + 2 - (2N + 4)} = 2^{A + N + 2 - 2N - 4} = 2^{A - N - 2} \] - For the base \( 3 \): \[ 3^{A + 3 - (N + 2)} = 3^{A + 3 - N - 2} = 3^{A - N + 1} \] 5. **Final expression:** Combining these results, we have: \[ \frac { 6^{A + 3} \cdot 2^{N - 1} } { 12^{N + 2} } = 2^{A - N - 2} \cdot 3^{A - N + 1} \] This is the simplified form of the original expression.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To simplify the expression \( \frac { 6 ^ { A + 3 } \cdot 2 ^ { N - 1 } } { 12 ^ { N + 2 } } \), we start by rewriting the bases: 1. Note that \( 12 = 6 \cdot 2 \), so \( 12^{N + 2} = (6 \cdot 2)^{N + 2} = 6^{N + 2} \cdot 2^{N + 2} \). 2. Substituting this back into the expression gives us: \[ \frac{6^{A + 3} \cdot 2^{N - 1}}{6^{N + 2} \cdot 2^{N + 2}} \] 3. This can be split into two fractions: \[ \frac{6^{A + 3}}{6^{N + 2}} \cdot \frac{2^{N - 1}}{2^{N + 2}} \] 4. Using the properties of exponents, we simplify each fraction: - For the first fraction: \( \frac{6^{A + 3}}{6^{N + 2}} = 6^{(A + 3) - (N + 2)} = 6^{A - N + 1} \) - For the second fraction: \( \frac{2^{N - 1}}{2^{N + 2}} = 2^{(N - 1) - (N + 2)} = 2^{-3} = \frac{1}{2^3} = \frac{1}{8} \) 5. Combining these results, we arrive at the simplified expression: \[ \frac{6^{A - N + 1}}{8} \] And there you have it! The expression simplifies beautifully to \( \frac{6^{A - N + 1}}{8} \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy