\( \frac { 6 ^ { A + 3 } \cdot 2 ^ { N - 1 } } { 12 ^ { N + 2 } } \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To simplify the expression \( \frac { 6 ^ { A + 3 } \cdot 2 ^ { N - 1 } } { 12 ^ { N + 2 } } \), we start by rewriting the bases: 1. Note that \( 12 = 6 \cdot 2 \), so \( 12^{N + 2} = (6 \cdot 2)^{N + 2} = 6^{N + 2} \cdot 2^{N + 2} \). 2. Substituting this back into the expression gives us: \[ \frac{6^{A + 3} \cdot 2^{N - 1}}{6^{N + 2} \cdot 2^{N + 2}} \] 3. This can be split into two fractions: \[ \frac{6^{A + 3}}{6^{N + 2}} \cdot \frac{2^{N - 1}}{2^{N + 2}} \] 4. Using the properties of exponents, we simplify each fraction: - For the first fraction: \( \frac{6^{A + 3}}{6^{N + 2}} = 6^{(A + 3) - (N + 2)} = 6^{A - N + 1} \) - For the second fraction: \( \frac{2^{N - 1}}{2^{N + 2}} = 2^{(N - 1) - (N + 2)} = 2^{-3} = \frac{1}{2^3} = \frac{1}{8} \) 5. Combining these results, we arrive at the simplified expression: \[ \frac{6^{A - N + 1}}{8} \] And there you have it! The expression simplifies beautifully to \( \frac{6^{A - N + 1}}{8} \).