4. Express the following complex number in rectangular form WITHOUT the use of a calculator: \( \sqrt{2}\left(\right. \text{ \cos } \left.60^{\circ}+i \sin 60^{\circ}\right) \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To express the complex number in rectangular form, we start with the given expression: \[ \sqrt{2}\left( \cos 60^{\circ} + i \sin 60^{\circ} \right) \] From trigonometric values, we know that: \[ \cos 60^{\circ} = \frac{1}{2} \quad \text{and} \quad \sin 60^{\circ} = \frac{\sqrt{3}}{2} \] Substituting these values in, we have: \[ \sqrt{2}\left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right) \] Next, we distribute \(\sqrt{2}\): \[ \sqrt{2} \cdot \frac{1}{2} + i \sqrt{2} \cdot \frac{\sqrt{3}}{2} \] This simplifies to: \[ \frac{\sqrt{2}}{2} + i \frac{\sqrt{6}}{2} \] Thus, the rectangular form of the complex number is: \[ \frac{\sqrt{2}}{2} + i \frac{\sqrt{6}}{2} \]