Answer
a) Conjugate of \( z \): \( -1 - 2i \)
b) On the Argand diagram, \( z = -1 + 2i \) is plotted at (-1, 2) and its conjugate \( \overline{z} = -1 - 2i \) at (-1, -2).
c) Modulus \( r \) of \( z \): \( \sqrt{5} \)
d) Argument \( \theta \) of \( z \): Approximately \( 2.0344 \) radians (\( 116.57^\circ \))
e) On the Argand diagram, \( r = \sqrt{5} \) is the distance from the origin to \( z \), and \( \theta \approx 116.57^\circ \) is the angle with the positive real axis.
f) Polar form of \( z \): \( \sqrt{5} \left( \cos 2.0344 + i \sin 2.0344 \right) \) or \( \sqrt{5} e^{i \cdot 2.0344} \)
Solution
Let's address each part of the problem step by step.
Given:
\[ z = \frac{-3 + 6i}{3} \]
First, simplify \( z \):
\[ z = \frac{-3}{3} + \frac{6i}{3} = -1 + 2i \]
### **a) Conjugate of \( z \)**
The **conjugate** of a complex number \( z = a + bi \) is \( \overline{z} = a - bi \).
For \( z = -1 + 2i \):
\[ \overline{z} = -1 - 2i \]
**Answer:**
\[ \overline{z} = -1 - 2i \]
---
### **b) Representation on an Argand Diagram**
An **Argand diagram** is a graphical representation of complex numbers where the horizontal axis represents the real part and the vertical axis represents the imaginary part.
- **\( z = -1 + 2i \):**
- Real part (\( \text{Re}(z) \)) = -1
- Imaginary part (\( \text{Im}(z) \)) = 2
- **Conjugate \( \overline{z} = -1 - 2i \):**
- Real part (\( \text{Re}(\overline{z}) \)) = -1
- Imaginary part (\( \text{Im}(\overline{z}) \)) = -2
**Diagram Description:**
- Plot point \( z \) at (-1, 2).
- Plot point \( \overline{z} \) at (-1, -2).
![Argand Diagram](https://i.imgur.com/ArgandDiagram.png)
*Note: Imagine a coordinate system with points plotted at (-1, 2) and (-1, -2).*
---
### **c) Modulus \( (r) \) of \( z \)**
The **modulus** of a complex number \( z = a + bi \) is given by:
\[ r = |z| = \sqrt{a^2 + b^2} \]
For \( z = -1 + 2i \):
\[ r = \sqrt{(-1)^2 + (2)^2} = \sqrt{1 + 4} = \sqrt{5} \]
**Answer:**
\[ r = \sqrt{5} \]
---
### **d) Argument \( (\theta) \) of \( z \)**
The **argument** \( \theta \) of a complex number \( z = a + bi \) is the angle made with the positive real axis, calculated using:
\[ \theta = \tan^{-1}\left(\frac{b}{a}\right) \]
For \( z = -1 + 2i \):
- \( a = -1 \), \( b = 2 \)
Since \( a < 0 \) and \( b > 0 \), \( z \) lies in the **second quadrant**.
\[ \theta = \pi - \tan^{-1}\left(\frac{2}{1}\right) \approx \pi - 1.1071 \approx 2.0344 \text{ radians} \]
or approximately \( 116.57^\circ \).
**Answer:**
\[ \theta \approx 2.0344 \text{ radians} \ (\approx 116.57^\circ) \]
---
### **e) Indicating \( r \) and \( \theta \) on the Argand Diagram**
On the Argand diagram:
- **Modulus (\( r = \sqrt{5} \))** is the distance from the origin to the point \( z \) at (-1, 2).
- **Argument (\( \theta \approx 116.57^\circ \))** is the angle between the positive real axis and the line connecting the origin to \( z \).
**Diagram Description:**
- Draw a line from the origin to (-1, 2).
- Label this line with length \( \sqrt{5} \) and angle \( \theta \approx 116.57^\circ \).
---
### **f) Polar Form of \( z \)**
The **polar form** of a complex number is expressed as:
\[ z = r (\cos \theta + i \sin \theta) \]
or
\[ z = r e^{i\theta} \]
Using the modulus and argument from above:
\[ z = \sqrt{5} \left( \cos 2.0344 + i \sin 2.0344 \right) \]
or
\[ z = \sqrt{5} \, e^{i \cdot 2.0344} \]
**Answer:**
\[ z = \sqrt{5} \left( \cos 2.0344 + i\, \sin 2.0344 \right) \]
*Alternatively,*
\[ z = \sqrt{5}\, e^{i\,2.0344} \]
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution