Question
upstudy study bank question image url

\( \frac{7}{6 x}+\frac{x-5}{8 x^{2}} \) Select the correct choice below and fill in any answer boxes within your choice. (Simplify your answer. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) A. \( \frac{7}{6 x}+\frac{x-5}{8 x^{2}}=\frac{31 x-15}{7}, \frac{x-5}{8 x^{2}}=\square, \square \) B. no numbers must be excluded. B A

Ask by Cross Riley. in the United States
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified expression is \( \frac{31x - 15}{24x^2} \).

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{7}{6x}+\left(\frac{\left(x-5\right)}{8x^{2}}\right)\) - step1: Remove the parentheses: \(\frac{7}{6x}+\left(\frac{x-5}{8x^{2}}\right)\) - step2: Remove the parentheses: \(\frac{7}{6x}+\frac{x-5}{8x^{2}}\) - step3: Reduce fractions to a common denominator: \(\frac{7\times 4x}{6x\times 4x}+\frac{\left(x-5\right)\times 3}{8x^{2}\times 3}\) - step4: Multiply the numbers: \(\frac{7\times 4x}{24x\times x}+\frac{\left(x-5\right)\times 3}{8x^{2}\times 3}\) - step5: Multiply the numbers: \(\frac{7\times 4x}{24x\times x}+\frac{\left(x-5\right)\times 3}{24x^{2}}\) - step6: Multiply the terms: \(\frac{7\times 4x}{24x^{2}}+\frac{\left(x-5\right)\times 3}{24x^{2}}\) - step7: Transform the expression: \(\frac{7\times 4x+\left(x-5\right)\times 3}{24x^{2}}\) - step8: Multiply the terms: \(\frac{28x+\left(x-5\right)\times 3}{24x^{2}}\) - step9: Multiply the terms: \(\frac{28x+3x-15}{24x^{2}}\) - step10: Add the terms: \(\frac{31x-15}{24x^{2}}\) To simplify the expression \( \frac{7}{6 x}+\frac{x-5}{8 x^{2}} \), we follow these steps: 1. **Identify a common denominator**: The denominators are \( 6x \) and \( 8x^2 \). The least common denominator (LCD) is \( 24x^2 \). 2. **Rewrite each fraction with the common denominator**: - For \( \frac{7}{6x} \): \[ \frac{7}{6x} = \frac{7 \cdot 4x}{6x \cdot 4} = \frac{28x}{24x^2} \] - For \( \frac{x-5}{8x^2} \): \[ \frac{x-5}{8x^2} = \frac{(x-5) \cdot 3}{8x^2 \cdot 3} = \frac{3(x-5)}{24x^2} = \frac{3x - 15}{24x^2} \] 3. **Combine the fractions**: \[ \frac{28x}{24x^2} + \frac{3x - 15}{24x^2} = \frac{28x + 3x - 15}{24x^2} = \frac{31x - 15}{24x^2} \] Thus, the simplified expression is: \[ \frac{31x - 15}{24x^2} \] Now, let's fill in the answer boxes based on the choices provided: A. \( \frac{7}{6 x}+\frac{x-5}{8 x^{2}}=\frac{31 x-15}{24 x^{2}}, \frac{x-5}{8 x^{2}}=\frac{3x-15}{24x^{2}}, \frac{7}{6x}=\frac{28x}{24x^{2}} \) So the correct choice is A, and the filled answer boxes are: - \( \frac{x-5}{8 x^{2}}=\frac{3x-15}{24x^{2}} \) - \( \frac{7}{6x}=\frac{28x}{24x^{2}} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To combine the two fractions \( \frac{7}{6x} + \frac{x - 5}{8x^2} \), we first need a common denominator. The least common denominator (LCD) of \( 6x \) and \( 8x^2 \) is \( 24x^2 \). Let's rewrite both fractions with the LCD: 1. For \( \frac{7}{6x} \), multiply the numerator and denominator by \( 4x \): \[ \frac{7 \cdot 4x}{6x \cdot 4x} = \frac{28x}{24x^2}. \] 2. For \( \frac{x - 5}{8x^2} \), multiply the numerator and denominator by \( 3 \): \[ \frac{(x - 5) \cdot 3}{8x^2 \cdot 3} = \frac{3(x - 5)}{24x^2} = \frac{3x - 15}{24x^2}. \] Now we can combine the two fractions: \[ \frac{28x + 3x - 15}{24x^2} = \frac{31x - 15}{24x^2}. \] The simplified expression is: \[ \frac{31x - 15}{24x^2}. \] Now, engaging with your choices: Option A is the correct selection. A. \( \frac{7}{6 x}+\frac{x-5}{8 x^{2}}=\frac{31 x-15}{24x^2}, \frac{x-5}{8 x^{2}}=\frac{(x-5)}{8x^2}, \frac{31 x - 15}{24 x^2} \)

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy