\( \frac{7}{6 x}+\frac{x-5}{8 x^{2}} \) Select the correct choice below and fill in any answer boxes within your choice. (Simplify your answer. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) A. \( \frac{7}{6 x}+\frac{x-5}{8 x^{2}}=\frac{31 x-15}{7}, \frac{x-5}{8 x^{2}}=\square, \square \) B. no numbers must be excluded. B A
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To combine the two fractions \( \frac{7}{6x} + \frac{x - 5}{8x^2} \), we first need a common denominator. The least common denominator (LCD) of \( 6x \) and \( 8x^2 \) is \( 24x^2 \). Let's rewrite both fractions with the LCD: 1. For \( \frac{7}{6x} \), multiply the numerator and denominator by \( 4x \): \[ \frac{7 \cdot 4x}{6x \cdot 4x} = \frac{28x}{24x^2}. \] 2. For \( \frac{x - 5}{8x^2} \), multiply the numerator and denominator by \( 3 \): \[ \frac{(x - 5) \cdot 3}{8x^2 \cdot 3} = \frac{3(x - 5)}{24x^2} = \frac{3x - 15}{24x^2}. \] Now we can combine the two fractions: \[ \frac{28x + 3x - 15}{24x^2} = \frac{31x - 15}{24x^2}. \] The simplified expression is: \[ \frac{31x - 15}{24x^2}. \] Now, engaging with your choices: Option A is the correct selection. A. \( \frac{7}{6 x}+\frac{x-5}{8 x^{2}}=\frac{31 x-15}{24x^2}, \frac{x-5}{8 x^{2}}=\frac{(x-5)}{8x^2}, \frac{31 x - 15}{24 x^2} \)