Solve the following system of equations using an inverse matrix. You must also indicate the inverse matrix, \( A^{-1} \), that was used to solve the system. You may optionally write the inverse matrix with a scalar coefficient. \[ \begin{array}{r}-2 x-5 y=-6 \\ -x+y=8\end{array} \] Answer Attempt out of 2
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Mind Expander
First, let's represent the system of equations in matrix form. We can express it as \( AX = B \), where: \[ A = \begin{bmatrix} -2 & -5 \\ -1 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \end{bmatrix}, \quad B = \begin{bmatrix} -6 \\ 8 \end{bmatrix} \] Next, we need to find the inverse of matrix \( A \). The formula for the inverse of a 2x2 matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by: \[ A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] For our matrix \( A = \begin{bmatrix} -2 & -5 \\ -1 & 1 \end{bmatrix} \), we can calculate the determinant \( ad - bc \): \[ \text{det}(A) = (-2)(1) - (-5)(-1) = -2 - 5 = -7 \] Now we can calculate \( A^{-1} \): \[ A^{-1} = \frac{1}{-7} \begin{bmatrix} 1 & 5 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{7} & -\frac{5}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{bmatrix} \] Now we can solve for \( X \): \[ X = A^{-1}B = \begin{bmatrix} -\frac{1}{7} & -\frac{5}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{bmatrix} \begin{bmatrix} -6 \\ 8 \end{bmatrix} \] Calculating this product, we find: \[ X = \begin{bmatrix} -\frac{1}{7}(-6) + -\frac{5}{7}(8) \\ -\frac{1}{7}(-6) + \frac{2}{7}(8) \end{bmatrix} = \begin{bmatrix} \frac{6}{7} - \frac{40}{7} \\ \frac{6}{7} + \frac{16}{7} \end{bmatrix} = \begin{bmatrix} -\frac{34}{7} \\ \frac{22}{7} \end{bmatrix} \] Thus, the solution is: \[ x = -\frac{34}{7}, \quad y = \frac{22}{7} \] The inverse matrix used is: \[ A^{-1} = \begin{bmatrix} -\frac{1}{7} & -\frac{5}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{bmatrix} \]