3. Given \( f(x)=(x+3)(x-5) \), determine the \( x \)-intercepts fot \( f\left(\frac{1}{3} x\right) \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To find the \( x \)-intercepts of \( f\left(\frac{1}{3} x\right) \), start by substituting \( \frac{1}{3} x \) into the function \( f(x) \): \[ f\left(\frac{1}{3} x\right) = \left(\frac{1}{3} x + 3\right)\left(\frac{1}{3} x - 5\right) \] Set \( f\left(\frac{1}{3} x\right) = 0 \) to find the \( x \)-intercepts: \[ \left(\frac{1}{3} x + 3\right)\left(\frac{1}{3} x - 5\right) = 0 \] This gives us two equations: 1. \( \frac{1}{3} x + 3 = 0 \) leads to \( \frac{1}{3} x = -3 \) or \( x = -9 \). 2. \( \frac{1}{3} x - 5 = 0 \) leads to \( \frac{1}{3} x = 5 \) or \( x = 15 \). Thus, the \( x \)-intercepts of \( f\left(\frac{1}{3} x\right) \) are \( x = -9 \) and \( x = 15 \). Happy graphing!