Question
upstudy study bank question image url

\( \begin{array}{l} \text { Andrea }\\ \checkmark 22\\ 23\\ 24\\ 25\\ 26\\ \times 27\\ 28\\ 29\\ 30\\ \text { Espanol }\\ 33\\ \text { Divide the rational expressions. }\\ \frac{z}{z-9} \div \frac{z^{3}+5 z^{2}-36 z}{z^{2}-81}= \end{array} \)

Ask by Schmidt Bartlett. in the United States
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified expression is \( \frac{1}{z - 4} \).

Solution

To divide the given rational expressions: \[ \frac{z}{z - 9} \div \frac{z^{3} + 5z^{2} - 36z}{z^{2} - 81} \] **Follow these steps to simplify:** ### 1. Rewrite the Division as Multiplication by the Reciprocal Dividing by a fraction is the same as multiplying by its reciprocal. So, \[ \frac{z}{z - 9} \div \frac{z^{3} + 5z^{2} - 36z}{z^{2} - 81} = \frac{z}{z - 9} \times \frac{z^{2} - 81}{z^{3} + 5z^{2} - 36z} \] ### 2. Factor All Possible Expressions Let's factor the numerator and the denominator wherever possible. - **Factor \( z^{2} - 81 \):** This is a difference of squares. \[ z^{2} - 81 = (z - 9)(z + 9) \] - **Factor \( z^{3} + 5z^{2} - 36z \):** Factor out the greatest common factor (GCF), which is \( z \): \[ z^{3} + 5z^{2} - 36z = z(z^{2} + 5z - 36) \] Now, factor the quadratic \( z^{2} + 5z - 36 \): \[ z^{2} + 5z - 36 = (z + 9)(z - 4) \] So, \[ z^{3} + 5z^{2} - 36z = z(z + 9)(z - 4) \] ### 3. Substitute the Factored Forms Back into the Expression \[ \frac{z}{z - 9} \times \frac{(z - 9)(z + 9)}{z(z + 9)(z - 4)} \] ### 4. Cancel Common Factors Identify and cancel out the common terms in the numerator and the denominator. - **Cancel \( z \):** \[ \frac{\cancel{z}}{z - 9} \times \frac{(z - 9)(z + 9)}{\cancel{z}(z + 9)(z - 4)} = \frac{(z - 9)(z + 9)}{(z - 9)(z + 9)(z - 4)} \] - **Cancel \( z - 9 \):** \[ \frac{\cancel{(z - 9)}(z + 9)}{\cancel{(z - 9)}(z + 9)(z - 4)} = \frac{z + 9}{(z + 9)(z - 4)} \] - **Cancel \( z + 9 \):** \[ \frac{\cancel{z + 9}}{\cancel{z + 9}(z - 4)} = \frac{1}{z - 4} \] ### 5. Final Simplified Expression \[ \frac{z}{z - 9} \div \frac{z^{3} + 5z^{2} - 36z}{z^{2} - 81} = \frac{1}{z - 4} \] **Answer:** \[ \frac{1}{z - 4} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To divide the rational expressions, you first convert the division into a multiplication problem by flipping the second fraction. This gives you: \[ \frac{z}{z-9} \times \frac{z^{2}-81}{z^{3}+5z^{2}-36z} \] Next, factor any polynomials where possible. The expression \(z^2 - 81\) can be factored as \((z - 9)(z + 9)\) since it is a difference of squares. For the expression \(z^3 + 5z^2 - 36z\), you can factor out \(z\) (since it's present in every term) and then factor the trinomial, yielding \(z(z^2 + 5z - 36)\). The trinomial can further be factored to \((z + 9)(z - 4)\). Putting this all together, we have: \[ \frac{z}{z-9} \times \frac{(z - 9)(z + 9)}{z(z + 9)(z - 4)} \] Cancel the common factors: - \(z\) in the numerator and denominator. - \(z - 9\) cancel out since it shows up in both the numerator and denominator. What remains is: \[ \frac{1}{z - 4} \] So, \[ \frac{z}{z-9} \div \frac{z^{3}+5 z^{2}-36 z}{z^{2}-81} = \frac{1}{z - 4} \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy